
Improving the DragonFlyBSD Network Stack

Yanmin Qiao
sephe@dragonflybsd.org
DragonFlyBSD project

Abstract
In this paper, we are going to describe various im-
provements we have made to DragonFlyBSD to help
reduce and stabilize network latency, and increase net-
work performance. How it works and why it works in
DragonFlyBSD will be explained.

The configuration for nginx HTTP request/response
performance and latency evaluation is shown in Fig-
ure.1. 1KB web objects are used in the evaluation,
and a TCP connection only carries one HTTP request/
response, i.e. short-lived TCP connections.

Figure.1

The configuration used to evaluate IP forwarding per-
formance is shown in Figure. 2.

Figure.2

1. Use all available CPUs for network pro-
cessing
When DragonFlyBSD’s network stack was originally
adapted to use per-cpu thread serialization, it could
only use a power-of-2 count of CPUs on the system.
For example, a system with 24 CPUs would only use
16 of them for network processing. Though this inte-
grated well with the RSS hash calculations of the time,
it imposed significant limitations to the further explo-
ration of the stack’s potential. Also, 6, 10, 12 and 14
cores CPU packages are quite common these days.

Server

Intel
X550

Client

Intel
X540

Client

Intel
X550

15K concurrent connections on each client.

Client:
i7-3770, 16GB DDR3-1600, Hyperthreading enabled.

Server:
2x E5-2620v2, 32GB DDR3-1600, Hyperthreading enabled.

nginx:
Installed from dports.

nginx.conf:
Access log is disabled. 16K connections/worker.

MSL on clients and server are changed to 20ms by:
route change -net net -msl 20

/boot/loader.conf:
kern.ipc.nmbclusters=524288

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP
kern.ipc.somaxconn=256
net.inet.ip.portrange.last=40000

Intel
X540

forwarder

Intel
X550

Intel
X550

pktgen+sink

Intel
X540

Intel
X540

pktgen+sink

forwarder:
2x E5-2620v2, 32GB DDR3-1600,
Hyperthreading enabled.

pktgen+sink:
i7-3770, 16GB DDR3-1600,
Hyperthreading enabled.

/boot/loader.conf:
kern.ipc.nmbclusters=5242880

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP

Traffic generator:
DragonFlyBSD’s in kernel packet generator, which
has no issue to generate 14.8Mpps.

Traffic sink:
ifconfig ix0 monitor

Traffic:
Each pktgen targets 208 IPv4 addresses, which are
mapped to one link layer address on ‘forwarder’.

Performance counting:
Only packets sent by the forwarder are counted.

mailto:sephe@dragonflybsd.org

1.1. Issues when using only a power-of-2 CPU count for
network processing

One issue is the under-utilization of available comput-
ing power for kernel forwarding and bridging. For ex-
ample a system with 24 CPUs will only use 16, while
the rest of the CPUs (CPU17~CPU23) remain idle!
Another issue occurs mainly with the userland applica-
tions which support CPU localized network operation.
The userland application in this category that we ex-
ploit in this paper is nginx [1]. It has two CPU local-
ization options on DragonFlyBSD. The first option is
used to specify the number of workers, which handle
HTTP requests from clients. The second option allows
nginx to bind the workers to their respective CPUs. In
order to properly support CPU localized network oper-
ation, nginx workers must be bound to their respective
CPUs, and the number of workers must be same as the
number of CPUs handling network processing. We la-
bel this configuration as CONFIG.A.16. If the number
of CPUs in the system is not power-of-2, another
choice we have is to use twice as many nginx workers
as available CPUs and leave them unbound. We label
this configuration CONFIG.B. This configuration
does not CPU-localize its network operation. The per-
formance and latency comparison is shown in
Figure.3. Though CONFIG.A.16 gives a lower 99th

percentile latency and latency standard deviation com-
pared with CONFIG.B, its performance is lower, since
the system’s computing power is under utilized; only
16 out of the 24 CPUs are used in CONFIG.A.16.
While the performance of CONFIG.B is higher, its 99th

percentile latency and latency standard deviation is
much worse due to non CPU-localized network opera-
tion which cause excessive wakeup IPIs and con-

tention on the netisr’s message ports. Sadly, none of
these configurations are optimal.

1.2. Use all available CPUs for network processing

It is easier for the OS itself, i.e. from the kernel side,
to pick up a CPU from all available CPUs based on
RSS hash:

(RSS_hash & 127) % ncpus

However, configuring the NIC’s RSS redirect table,
and RX ring to CPU bindings require more considera-
tion. We avoid unnecessary IPIs when the input pack-
ets are redispatched to their respective netisrs ([2],
Figure 1.2). If (ncpus % nrxrings) == 0, then seq(0,
nrxrings-1) can be replicated N times to fill the RSS
redirect table. The RX rings can be bound to CPUs
belong to ((M * nrxrings) + seq(0, nrxrings-1)). For
example, on a system with 24 CPUs, 3 NICs, the max-
imum number of RX rings of each NIC is 8:

• The RSS redirect table of each NIC:

• The RX rings of NIC0 can be bound to
CPU0~CPU7, the RX rings of NIC1 can be
bound to CPU8~CPU15, while the RX rings
of NIC2 can be bound to CPU16~CPU23.

The difficulty comes, when (ncpus % nrxrings) != 0.
If we still replicate seq(0, nrxrings-1) onto the RSS re-
direct table, the number of unnecessary IPIs during in-
put packet redispatch would be increased substantially.
For example, on a system with 24 CPUs, 1 NIC, the
maximum number of RX rings of the NIC is 16:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

128 entries

CONFIG.B CONFIG.A.16 CONFIG.A.24
0

50000

100000

150000

200000

250000

0

20

40

60

80

100

120

140

160

180

200

215907.25

191920.81
210658.8

33.11 32.04

58.01

Figure.3

performance

latency-avg

latency-stdev

latency-.99

R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

• The RSS redirect table:

• The RX rings are bound to CPU0~CPU15.

In Figure.4 the host’s view is marked as ‘host’. The
above example is shown as ‘replicate’ in Figure.4.
The mismatches are shaded. Each mismatch causes
unnecessary IPIs during input packet redispatch.

But if the RSS redirect table is configured in the way
shown in Figure.4 as ‘fixed’, large amounts of unnec-
essary IPIs during the input packet redispatch is
avoided. In the example shown in Figure.4, the num-
ber of mismatches is halved, 32 mismatches are cut
down to 16 in the first 48 RSS redirect table entries.

We thus developed a set of functions (if_ringmap_*()
in sys/net/if.c) to help the drivers to create an optimal
RSS redirect table, and help the drivers bind the RX/
TX rings to CPUs in an optimal way. The basic ideas
behind these functions are:

1) The available CPUs are divided into equal
sized sets. The size of these sets is merely big
enough to hold the rings. Rings can be bound
to one set of CPUs starting from the first CPU
in the set.

2) The RSS redirect table is divided into grids
according to the set size calculated in 1). The
first nrings entries of the grid are filled with
seq(0, nrings-1). The rest of the entries for
the grid are filled with subset of seq(0, nrings-
1) in a round-robin fashion, e.g. if the grid is
5 with seq(0, 3), 0 will be used in the last en-
try of the first grid; 1 will be used in the last
entry of the second grid, and so on and so
forth.

1.3. Introduction to if_ringmap APIs

if_ringmap_alloc()

if_ringmap_alloc2()

Allocate a ringmap for RX or TX rings. The
ringmap contains optimal configuration of
RSS redirect table for RX ring, and optimal
CPU binding information for RX or TX rings.

For some NICs, e.g. jme(4), the number of
RX rings must be a power-of-2.
if_ringmap_alloc2() is designed for these
NICs.

if_ringmap_free()

Free the ringmap.

if_ringmap_align()

For some NICs, e.g. bce(4) and bnx(4), RX
rings and TX rings must be assigned to the
same set of CPUs, in the same order. If the
number of RX rings and TX rings are same,
the ringmaps allocated by if_ringmap_al-
loc() will meet this constraint fairly well.
However, if the number of RX rings and TX
rings are not same, then the CPU binding in-
formation in the ringmaps may not meet this
constraint. This function takes RX and TX
ringmaps and enforces the constraint.

if_ringmap_match()

For some NICs, e.g. igb(4) and ix(4), RX
rings and TX rings can be operated com-
pletely independently. However, if the num-
ber of RX rings and TX rings are not same,
the ringmaps allocated by if_ringmap_al-
loc() may not be able to distribute rings to
CPUs evenly. This function takes RX and TX
ringmaps and tries to make an even CPU dis-
tribution.

if_ringmap_cpumap()

Take a ringmap and a ring index, returns the
CPU binding information for that ring.

0 1 2 3 4 5 6 7 8 9 101112131415

128 entries

0 1 2 3 4 5 6 7 8 9 101112131415

0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 101112131415 8 9 101112131415

host

replicate

fixed

First 48 entries

Figure.4

if_ringmap_rdrtable()

Return a RSS redirect table. The RSS redi-
rect table’s size must be greater than or equal
to 128.

1.4. The performance improvement and latency reduc-
tion

• IP forwarding performance is improved by
5%~6%:

Before After

Normal 9.2Mpps 9.8Mpps

Fast 11.3Mpps 11.9Mpps

• Nginx HTTP request/response improvement
is shown in Figure.3 as CONFIG.A.24.
Though the latency is drastically stabilized,
performance drops a little (less than 2.5%),
and the average latency increases. We be-
lieve this is a desireable tradeoff and the
drawbacks of this change will be addressed in
section 3.

2. Direct input with polling(4)
In DragonFlyBSD polling(4) is the primary mecha-
nism to improve network performance in high-perfor-
mance situations, reduce and stabilize latency, and
prevent the system from being monopolized by packet
flooding. Unlike the polling(4) we inherited from
FreeBSD, the DragonflyBSD polling code understands
multiple TX/RX rings ([2], section 1.7).

2.1. Excessive L1 cache eviction and refetching with non-
direct input polling(4)

Figure.5 illustrates what happens when polling(4) gets
several input packets with indirect input polling(4).
Though the data portion of the mbuf is not touched if
the NIC provides a RSS hash, the mbuf itself requires
several modification on the NIC’s input path, i.e. be-
fore the packet is queued for network protocol process-
ing, the mbuf itself is cache hot, and probably is L1
cache hot. Since the NIC’s input path will queue up to
50 packets on it’s input path by default, the chance
that the previously queued mbufs will be evicted from
the L1 cache is high. When the network protocol pro-
cesses the queued mbufs, they will have to be fetched
into L1 cache again, thus reducing L1 cache utiliza-
tion.

2.2. Direct input polling(4)

The main reason for doing indirect input polling(4) is
that the NIC RX ring’s serializer must be held when

the NIC RX ring’s polling handler is running; requeu-
ing input mbufs for network protocol processing pre-
vents the NIC RX ring’s serializer from being held for
too much time, and also prevents a dangerous dead-
lock against the NIC RX ring’s serializer. Let’s inves-
tigate again why the NIC RX ring’s serializer should
be held when the NIC RX ring’s polling handler is run-
ning. It is used to prevent various races from happen-
ing if the NIC is brought down while the NIC RX ring
is handling heavy input traffic. The NIC RX polling
handler is running in netisr and can be easily synchro-
nized using a synchronous message. As long as the
NIC driver can synchronize with the RX ring polling
handler on it’s stop path, RX ring’s serializer does not
need to be held before its polling handler, thus the net-
work processing can run directly from the NIC RX
ring’s input path without worrying about the issues
brought about by the RX ring’s serializer. The direct
input polling(4) is shown in Figure.6.

2.3. Resulting performance improvement

• IP forwarding performance is improved by
10%~12%:

netisrN

Hold RX serializer
NIC_rxpoll(ifp1)
 NIC_rxeof(ifp1)
 Setup mbuf1
 Queue mbuf1
 Setup mbuf2
 Queue mbuf2
 Setup mbuf3
 Queue mbuf3
Release RX serializer

Dequeue mbuf1
ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)

Dequeue mbuf2
ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)

Dequeue mbuf3
ether_input_handler(mbuf3)
 ip_input(mbuf3)
 ip_forward(mbuf3)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)

netisrN
msgport

mbuf3

mbuf2

mbuf1

Figure.5

Before After

Normal 9.8Mpps 11.0Mpps

Fast 11.9Mpps 13.2Mpps

• Not much nginx HTTP request/response im-
provement is observed, because unlike IP for-
warding, the TCP input and userland process-
ing takes the majority of the input processing
time. For this path the only real improvement
is that the latency standard deviation is re-
duced from 5.20ms to 4.60ms.

3. Kqueue(2) accept queue length report
In all BSDs kqueue(2) reports accept queue length
when the EVFILTER_READ kevent for a listen(2)
socket is ready. Most of the userland applications ig-
nore kevent’s accept queue length by using nonblock-
ing listen(2) socket and polling until nothing can be
accepted:

kevent(kq, NULL, 0, &kvt, 1);

for (;;) {

 s = accept(ls, &addr, &addrlen);

 if (s < 0) {

 if (errno == EWOULDBLOCK)

 break;

 }

}

We have no cure for this kind of userland application.
However, some kqueue(2)-aware userland applications
use the accept queue length provided by kevent, most
noticeably nginx. Nginx uses the accept queue length
like this:

do {

 s = accept(ls, &addr, &addrlen);

 /* Setup the accepted socket */

} while (--accept_queue_length);

The “Setup the accepted socket” part could be time
consuming, which may destabilize and increase HTTP
request handling latency, if the connection is short-
lived and the accept queue length is too long.

3.1. Double edged sword: listen(2) socket’s backlog

The backlog of the listen(2) socket is used to absorb
temporary jitter and allows userland application to do
more work before calling accept(2), so setting this to a
low value, e.g. 32, will cause too many connection
drops. However, setting the backlog to a relatively
large value, e.g. 256, will also have a negative impact
on the latency of short-lived request/response, as we
have shown at the beginning of this section; the accept
queue length reported by the kqueue(2) can wind up
being very large.

3.2. Don’t be honest about the accept queue length

It’s actually quite simple to enjoy both the benefit of a
relatively large listen(2) socket backlog, while keeping
the time consumption of the accept(2) loop controlled.
We just put an upper limit on how long an accept
queue length kqueue(2) can report. In DragonFlyBSD,
we added a global sysctl(9) for this upper limit, and
the default value for this upper limit is 32. It’s ar-
guable whether the userland application should en-
force an upper limit on the accept(2) loop, or whether
the kernel should put an upper limit on the kqueue(2)’s
accept queue length. Currently, we believe it’s much
easier to do this on the kernel side, and all applications
can enjoy the improvement without modification.

3.3. Resulting performance improvements and latency
reduction

Nginx HTTP request/response improvements are
shown in Figure.7, marked as FINAL. We borrow
CONFIG.B and CONFIG.A.24 from section 1 for
comparison. Compared with CONFIG.B, where we
started, FINAL’s performance is improved a bit, and
the latency is greatly stabilized and reduced.

NIC_rxpoll(ifp1)
 NIC_rxeof(ifp1)
 Setup mbuf1
 ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)

 Setup mbuf2
 ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)

 Setup mbuf3
 ether_input_handler(mbuf3)
 ip_input(mbuf3)
 ip_forward(mbuf3)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)

Figure.6

netisrN

4. Sending aggregation from the network
stack
Various studies [3] have already shown that writing the
NIC TX ring’s doorbell register costs a lot on the send-
ing path. Though most of the high performance driv-
ers have already deployed various mechanism to re-
duce their TX ring’s doorbell register writing, the ef-
fectiveness still depends a lot on how the network
stack dispatches the packets to the driver. In many
cases, the network stack passes only one packet to the
driver at a time, e.g. on the IP forwarding path, thus
the TX ring’s doorbell register ends up being written
for each packet.

4.1. Explicit sending aggregation in netisr

In DragonFlyBSD, we don’t call driver’s if_start()
method for each packet; the packet is just queued to
the NIC TX ring’s IFQ. IFQ maintains two counters: a
byte counter and packet counter, which count how
many bytes and packets are pending for sending.
These counters are updated when a packet is queued to
the IFQ, and are reset when the if_start() is called with
the IFQ. The driver’s if_start() method will be called
with the IFQ, when either of the following conditions
meet:

• IFQ’s packet counter goes beyond a threshold,
which is controlled by a sysctl(9). The
threshold is 16 by default.

• IFQ’s byte counter gets greater than 1500.
This threshold can’t be adjusted, and is heav-
ily influenced by CoDel’s settings.

• The netisr is going to sleep, i.e. there is no
more network related work to do. This is
achieved through a registerable ‘rollup’,

CONFIG.B CONFIG.A.24 FINAL
0

50000

100000

150000

200000

250000

0

20

40

60

80

100

120

140

160

180

200

215907.25 210658.8 217599.01

33.11

58.01

32

Figure.7

performance

latency-avg

latency-stdev

latency-.99

R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

Dequeue ifp1 RX ring[N] polling msg
NIC_rxpoll(ifp1, RX ring[N])
 NIC_rxeof(ifp1, RX ring[N])
 Setup mbuf1
 ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)
 Queue mbuf1 to ifp2.IFQ[N]
 Setup mbuf2
 ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)
 Queue mbuf2 to ifp3.IFQ[N]

netisrN.msgport has no more msgs

rollup1()
 // Flush pending aggregated TCP ACKs
 tcp_output(tcpcb1)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)
 Queue mbuf3 to ifp2.IFQ[N]
 tcp_output(tcpcb2)
 ip_output(mbuf4)
 ifp3->if_output(mbu4)
 Queue mbuf4 to ifp3.IFQ[N]

rollup2()
 // Flush pending mbufs on IFQs
 ifp2->if_start(ifp2.IFQ[N])
 Put mbuf1 to ifp2 TX ring[N]
 Put mbuf3 to ifp2 TX ring[N]
 Write ifp2 TX ring[N] doorbell reg
 ifp3->if_start(ifp3.IFQ[N])
 Put mbuf2 to ifp3 TX ring[N]
 Put mbuf4 to ifp3 TX ring[N]
 Write ifp3 TX ring[N] doorbell reg

Wait for more msgs on netisrN.msgport

netisrN

Figure.8

which is also used for TCP ACK aggregation.
The registered ‘rollup’ list will be called be-
fore the netisr thread blocks for more mes-
sages. This works, since all network sends
only happen via netisrs in DragonFlyBSD.
This is shown in Figure.8.

• NIC TX ring’s interrupt happens.

Because DragonFlyBSD’s kernel threads (netisrs are
plain kernel threads) are not preemptable by non-inter-
rupt kernel threads, explicit sending aggregation does
not cause latency issues.

4.2. Resulting performance improvements

• IP forwarding performance improvement

pktcnt=4 pktcnt=16 (**)

Normal 11.0Mpps 11.3Mpps

Fast 13.8Mpps (*) 14.2Mpps

(*) Increased from 13.2Mpps (as shown in
section 2.3) to 13.8Mpps, after mbuf objcache
caching limit was increased and Matthew Dil-
lon’s VM improvements.

(**) Setting pkgcnt to anything above 16
gives no observable performance improve-
ment.

• No observable improvement for nginx HTTP
request/response, after the pktcnt is increased
from 4 to 16.

5. Per CPU IPFW states
In DragonFlyBSD, IPFW was made MPSAFE back in
2008. At that time, the static rules were replicated to
each netisr, but the states were read-write-locked as
shown in Figure.9. This is mainly because the UDP
MPSAFE work was not ready in 2008: UDP input and
output for the same UDP 4-tuples were not running in
the same netisr; this was fixed in 2014. Though read-
write-locked states work quite well for relatively per-
sistent states, e.g. TCP connections on which several
HTTP requests/responses are exchanged, the perfor-
mance degenerates drastically and the latency in-
creases dramatically for short-lived states, e.g. TCP
connections service only one HTTP request/response
exchange, which is still quite common nowadays.

5.1. Independent per-CPU states

In DragonFlyBSD, the packets associated with a TCP/
UDP address/port 4-tuple or other IP protocol’s ad-
dress 2-tuple are always processed in their respective
netisrs, so we can remove the read-write state lock
completely, and use one state table for each netisr;
they never interfere with each other. Each state table
can be operated (expand and shrink) independently
and locklessly by their owning netisr as shown in Fig-
ure.10. For short-lived states, this avoids both heavy
contention on the original global read-write lock and
reduces cache-line bouncing between CPUs.

The only shared datum is the global state counter,
which prevents the total number of states from going

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state

1
2
3

0

State table
Global shared
Protected by rwlock

cpu0 cpu1 cpu2 cpu3

Figure.9

beyond a certain threshold. This datum is loosely up-
dated, which allows 5% overflow. Given that memory
is quite cheap nowadays, we believe this is fine. The
loose update works like this:

• Each state table has a per-netisr counter,
which is updated when a state is installed or
removed. This update is lockless.

• Once per state table counter reaches certain
threshold, it is added to the global state
counter. Since this does not happen often, the
effect of cache trashing by updating global
state counter should be pretty minimal.
Atomic operations are not used here though.

• At state installation, the global state counter
is checked, which is a read-only operation. If
it reaches the limit, the global state counter
will be refreshed by merging all of the state
counters from the per-cpu state tables, and
will be checked against the limit again. If it
broke its limit, the current CPU’s state table
will be GC’d first. If there are still too many
states, IPIs are dispatched to all netisrs to GC
their own state tables. This operation is con-
strained to once per second. However, on a
properly configured system, the global state
counter should not break its limit even when
operating at a high frequency.

This loose counter updating mechanism was initially
implemented by Matthew Dillon for the DragonFly-
BSD’s slab allocator, and was borrowed for IPFW and
a number of other kernel subsystems.

5.2. The ‘limit’

IPFW ‘limit’ command sets an upper limit for a set of
states based on the conditions configured by the user,
e.g. 10 states for a given address pair. When IPFW
states were made per-CPU, the ‘limit’ got reworked
and abstracted into two tiers: the track counter tier,
which is globally shared, and the track tier, which is
per CPU. The name ‘track’ is taken from pf(4). The
track counter maintains the limit and a counter which
counts how many states are tracked by it. The track
points to a track counter and maintains a list of states
tracked by it, as shown in Figure.11. If a tracked state
is about to be installed, a track will be looked up lock-
lessly, since the track table is per-CPU, and the track
counter will be checked and updated using atomic-ops
through the track. Contention can still happen in the
track counter tier, if a new track is being added to the
per-CPU track table, or the last track of the track
counter is about to be removed. Loose counter updat-
ing can’t be used for tracks, since the limit is usually
pretty low.

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state3

state1 state2

state0 state4

state5

State table
counter

State table
counter

State table
counter

State table
counter

global counter

cpu0 cpu1 cpu2 cpu3

Figure.10

5.3. Resulting performance improvements and latency
reduction

The performance/latency evaluation was conducted us-
ing nginx HTTP request/response test. IPFW is run-
ning on the server side. IPFW settings:

• The maximum number of read-writ-locked
states is set to 500K. The hash table bucket
size is 64K.

• The maximum number of states for per-CPU
states is set to 100K (~14MB memory). No
hash table settings, since per-CPU state tables
uses red-black trees.

• Two IPFW rules are added:

ipfw add 1 check-state

ipfw add allow tcp from any to me 80 setup keep-state

(default to deny)

The performance/latency comparison is shown in Fig-
ure.12. The results of CONFIG.A.24 (section 1.4) are
shown as ‘no IPFW’, because the per-CPU IPFW state
was implemented immediately after the changes in
section 1. Though there are some performance/latency
gaps between ‘no IPFW’ and ‘percpu state’, they are
pretty close. When ‘percpu state’ is compared with
‘rwlock state’, you can see that the performance is
greatly improved, while latency is significantly stabi-
lized and reduced.

5.4. State based redirection

Since the per-CPU states gave pretty good results, we
moved on and tried to use per-CPU states to build
NAT/redirection. Redirection has been implemented
as of this writing, and NAT work is still going on, so
only redirection will be described here. Two states are
used for a given redirected flow: the master state is
identified by {saddr:sport, odaddr:odport}, i.e. before
the translation; the slave state is identified by

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state3

state1 state2

state0 state4

state5

State tableState table State table State table

cpu0 cpu1 cpu2 cpu3

Figure.11

track0

trackcnt0

state list

count ptr

count=6

Track table Track table

track1

state list

count ptr

Track table

track2

state list

count ptr

Track table

Track count table
Global shared
locked

{ndaddr:ndport, saddr:sport}, i.e. after the translation.
However, most often (almost 99% of the time), these
two states will not be hashed to the same CPU, so we
need ways to:

• Install the slave state on the remote CPU.

• Continue walking the rules on the remote
CPU after translation.

• Remove the slave state on the remote CPU,
once the master state is deleted.

In order to achieve this at IPFW redirection rule cre-
ation time, we save the addresses of its replica into
each of the replicated rules, so that the corresponding
IPFW redirection rule on the remote CPU can be lo-
cated easily. The initial translation for the redirection
is shown in Figure.13. Each IPFW redirection rule
replica maintains a cross-reference counter. In the
packet originating netisr, the cross-reference counter is
incremented by 1, while in the remote netisr, i.e. the
targeting netisr, the corresponding rule replica’s cross-
reference counter is decremented by 1. The rule repli-
cas are only deleted in their respective netisrs: when
the sum of all IPFW redirection rule replicas reaches
0, the replicas are no longer referenced, and the IPFW
redirection rule replicas can be freed safely. This
mechanism avoids expensive atomic reference count-
ing at high frequencies. Deletion of states created by
IPFW redirection rules is initiated by the deletion of
master state, i.e. the slave state would never initiate
deletion, even if the slave state expired. Master state
deletion consists of 2 steps:

1. The master state is removed from its owning
per CPU state table.

2. The master state is dispatched to the netisr
owning the slave state for the final destruc-
tion.

The master/slave states also deploy cross reference
counting mechanism themselves to make sure that
they can be invalidated timely, and inflight packets
can still check them safely.

no IPFW percpu state rwlock state
0

50000

100000

150000

200000

250000

0

50

100

150

200

250

300

210658.8
191626.58

43481.19
58.01 64.74

153.76

Figure.12

performance

latency-avg

latency-stdev

latency-.99

R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

5. Reference
[1] nginx, http://nginx.org/

[2] 10 years with DragonFlyBSD network stack,
https://leaf.dragonflybsd.org/~sephe/
AsiaBSDCon%20-%20Dfly.pdf

[3] netmap, http://info.iet.unipi.it/~luigi/papers/
20120503-netmap-atc12.pdf

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

master
state

slave
state

state table state table

ip_input(mbuf)
 ipfw_chk(mbuf)
 Match redirect rule
 Create master state
 Link master state to redirect rule[M]
 Install master state
 Xlate mbuf
 Rehash mbuf
 Create slave state
 Link slave state to redirect rule[N]
 Tuck slave state into mbuf.netmsg
 Send mbuf.netmsg to netisrN

Dequeue mbuf.netmsg
ipfw_xlate_redispatch(mbuf.netmsg)
 ip_input(mbuf)
 ipfw_chk(mbuf)
 Install slave state
 Continue from redirect rule’s act
 ip_forward(mbuf)
 ip_output(mbuf)
 ipfw_chk(mbuf)
 Match slave state
 Xlate direction mismatch, no xlate
 Continue from redirect rule’s act
 ifp->if_output(mbuf)

netisrM netisrN

cpuM cpuN

Figure.13

https://leaf.dragonflybsd.org/~sephe/AsiaBSDCon%20-%20Dfly.pdf
https://leaf.dragonflybsd.org/~sephe/AsiaBSDCon%20-%20Dfly.pdf
http://nginx.org/

