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Abstract
In  this  paper,  we  are  going  to  describe  various  im-
provements we have made to DragonFlyBSD to help
reduce and stabilize network latency, and increase net-
work performance.  How it works and why it works in
DragonFlyBSD will be explained.

The  configuration  for  nginx  HTTP  request/response
performance  and latency evaluation is shown in Fig-
ure.1.   1KB web  objects  are used in  the  evaluation,
and a TCP connection only carries one HTTP request/
response, i.e. short-lived TCP connections.

Figure.1

The configuration used to evaluate IP forwarding per-
formance is shown in Figure. 2.

Figure.2

1. Use all available CPUs for network pro-
cessing
When  DragonFlyBSD’s network stack  was originally
adapted  to  use  per-cpu  thread  serialization,  it  could
only use a power-of-2 count of CPUs on the system.
For example,  a system with 24 CPUs would only use
16 of them for network processing.  Though this inte-
grated well with the RSS hash calculations of the time,
it imposed significant limitations to the further explo-
ration of the stack’s potential.  Also, 6, 10, 12 and 14
cores CPU packages are quite common these days.
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i7-3770, 16GB DDR3-1600, Hyperthreading enabled.

Server:
2x E5-2620v2, 32GB DDR3-1600, Hyperthreading enabled.

nginx:
Installed from dports.

nginx.conf:
Access log is disabled.  16K connections/worker.

MSL on clients and server are changed to 20ms by:
route change -net net -msl 20

/boot/loader.conf:
kern.ipc.nmbclusters=524288

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP
kern.ipc.somaxconn=256
net.inet.ip.portrange.last=40000
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forwarder:
2x E5-2620v2, 32GB DDR3-1600,
Hyperthreading enabled.

pktgen+sink:
i7-3770, 16GB DDR3-1600,
Hyperthreading enabled.

/boot/loader.conf:
kern.ipc.nmbclusters=5242880

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP

Traffic generator:
DragonFlyBSD’s in kernel packet generator, which
has no issue to generate 14.8Mpps.

Traffic sink:
ifconfig ix0 monitor

Traffic:
Each pktgen targets 208 IPv4 addresses, which are
mapped to one link layer address on ‘forwarder’.

Performance counting:
Only packets sent by the forwarder are counted.
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1.1. Issues when using only a power-of-2 CPU count for
network processing

One issue is the under-utilization of available comput-
ing power for kernel forwarding and bridging.  For ex-
ample a system with 24 CPUs will only use 16, while
the  rest  of  the  CPUs  (CPU17~CPU23)  remain  idle!
Another issue occurs mainly with the userland applica-
tions which support CPU localized network operation.
The userland application in this category that  we ex-
ploit in this paper is nginx [1].  It has two CPU local-
ization options on DragonFlyBSD.  The first option is
used to specify the number of workers, which handle
HTTP requests from clients.  The second option allows
nginx to bind the workers to their respective CPUs.  In
order to properly support CPU localized network oper-
ation, nginx workers must be bound to their respective
CPUs, and the number of workers must be same as the
number of CPUs handling network processing.  We la-
bel this configuration as CONFIG.A.16.  If the number
of  CPUs  in  the  system  is  not  power-of-2,  another
choice we have is to use twice as many nginx workers
as available CPUs and leave them unbound.  We label
this  configuration  CONFIG.B.   This  configuration
does not CPU-localize its network operation.  The per-
formance  and  latency  comparison  is  shown  in
Figure.3.   Though  CONFIG.A.16  gives  a  lower  99th

percentile latency and latency standard deviation com-
pared with CONFIG.B, its performance is lower, since
the system’s computing power is under utilized; only
16  out  of  the  24  CPUs  are  used  in  CONFIG.A.16.
While the performance of CONFIG.B is higher, its 99th

percentile  latency  and  latency  standard  deviation  is
much worse due to non CPU-localized network opera-
tion  which  cause  excessive wakeup  IPIs  and  con-

tention on the netisr’s message ports.  Sadly,  none of
these configurations are optimal.

1.2. Use all available CPUs for network processing

It  is easier for the OS itself, i.e. from the kernel side,
to pick up a CPU from all  available  CPUs based on
RSS hash:

(RSS_hash & 127) % ncpus

However,  configuring  the NIC’s  RSS  redirect  table,
and RX ring to CPU bindings require more considera-
tion.  We avoid unnecessary IPIs when the input pack-
ets  are  redispatched  to  their respective  netisrs  ([2],
Figure 1.2).   If (ncpus % nrxrings) == 0, then seq(0,
nrxrings-1) can be replicated N times to fill  the RSS
redirect  table.   The RX rings can be bound to CPUs
belong to ((M * nrxrings) + seq(0,  nrxrings-1)).   For
example, on a system with 24 CPUs, 3 NICs, the max-
imum number of RX rings of each NIC is 8:

• The RSS redirect table of each NIC:

• The  RX  rings  of  NIC0  can  be  bound  to
CPU0~CPU7, the  RX rings of  NIC1 can  be
bound to CPU8~CPU15, while  the RX rings
of NIC2 can be bound to CPU16~CPU23.

The  difficulty comes, when (ncpus % nrxrings) != 0.
If we still replicate seq(0, nrxrings-1) onto the RSS re-
direct table, the number of unnecessary IPIs during in-
put packet redispatch would be increased substantially.
For example,  on a system with 24 CPUs, 1 NIC, the
maximum number of RX rings of the NIC is 16:
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• The RSS redirect table:

• The RX rings are bound to CPU0~CPU15.

In Figure.4  the host’s view is marked as ‘host’.   The
above  example  is  shown  as  ‘replicate’  in  Figure.4.
The mismatches  are  shaded.   Each  mismatch  causes
unnecessary IPIs during input packet redispatch.

But if the RSS redirect table is configured in the way
shown in Figure.4 as ‘fixed’, large amounts of unnec-
essary  IPIs  during  the  input  packet  redispatch  is
avoided.  In the example shown in Figure.4, the num-
ber of  mismatches  is  halved,  32 mismatches  are  cut
down to 16 in the first 48 RSS redirect table entries.

We thus developed a set of functions (if_ringmap_*()
in sys/net/if.c) to help the drivers to create an optimal
RSS redirect table,  and help the  drivers bind the RX/
TX rings to CPUs in an optimal way.  The basic ideas
behind these functions are:

1) The  available  CPUs  are  divided  into  equal
sized sets.  The size of these sets is merely big
enough to hold the rings.  Rings can be bound
to one set of CPUs starting from the first CPU
in the set.

2) The RSS redirect  table  is  divided  into  grids
according to the set size calculated in 1).  The
first nrings entries of the grid are filled with
seq(0,  nrings-1).   The  rest  of  the  entries  for
the grid are filled with subset of seq(0, nrings-
1) in a round-robin fashion, e.g.  if the grid is
5 with seq(0, 3), 0 will be used in the last en-
try of the first grid; 1 will be used in the last
entry  of  the  second  grid,  and  so  on  and  so
forth.

1.3. Introduction to if_ringmap APIs

if_ringmap_alloc()

if_ringmap_alloc2()

Allocate a ringmap for RX or TX rings.  The
ringmap  contains  optimal  configuration  of
RSS redirect  table  for RX ring,  and optimal
CPU binding information for RX or TX rings.

For  some  NICs,  e.g.  jme(4),  the  number  of
RX  rings  must  be  a  power-of-2.
if_ringmap_alloc2() is  designed  for  these
NICs.

if_ringmap_free()

Free the ringmap.

if_ringmap_align()

For some NICs,  e.g.  bce(4)  and  bnx(4),  RX
rings  and  TX rings must  be  assigned  to  the
same set of CPUs, in the same order.   If the
number of RX rings and TX rings are same,
the  ringmaps  allocated  by  if_ringmap_al-
loc() will  meet  this  constraint  fairly well.
However, if the number of RX rings and TX
rings are not same, then the CPU binding in-
formation in the ringmaps may not meet this
constraint.   This  function  takes  RX and TX
ringmaps and enforces the constraint.

if_ringmap_match()

For  some  NICs,  e.g.  igb(4)  and  ix(4),  RX
rings  and  TX  rings  can  be  operated  com-
pletely independently.  However, if the num-
ber of RX rings and TX rings are not same,
the  ringmaps  allocated  by  if_ringmap_al-
loc() may not be able to distribute rings to
CPUs evenly.  This function takes RX and TX
ringmaps and tries to make an even CPU dis-
tribution.

if_ringmap_cpumap()

Take a ringmap and a ring index, returns the
CPU binding information for that ring.
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if_ringmap_rdrtable()

Return a RSS redirect  table.   The RSS redi-
rect table’s size must be greater than or equal
to 128.

1.4.  The  performance  improvement  and latency  reduc-
tion

• IP  forwarding  performance  is  improved  by
5%~6%:

Before After

Normal 9.2Mpps 9.8Mpps

Fast 11.3Mpps 11.9Mpps

• Nginx  HTTP  request/response  improvement
is  shown  in  Figure.3  as  CONFIG.A.24.
Though  the  latency  is  drastically  stabilized,
performance  drops  a little  (less  than  2.5%),
and  the  average  latency  increases.   We  be-
lieve  this  is  a  desireable  tradeoff and  the
drawbacks of this change will be addressed in
section 3.

2. Direct input with polling(4)
In  DragonFlyBSD  polling(4) is  the  primary  mecha-
nism to improve network performance  in high-perfor-
mance  situations,  reduce   and  stabilize  latency,  and
prevent the system from being monopolized by packet
flooding.   Unlike  the  polling(4)  we  inherited  from
FreeBSD, the DragonflyBSD polling code understands
multiple TX/RX rings ([2], section 1.7).

2.1. Excessive L1 cache eviction and refetching with non-
direct input polling(4)

Figure.5 illustrates what happens when polling(4) gets
several  input  packets  with  indirect input  polling(4).
Though the data portion of the mbuf is not touched if
the NIC provides a RSS hash, the mbuf itself requires
several  modification on the NIC’s input path,  i.e.  be-
fore the packet is queued for network protocol process-
ing,  the mbuf itself  is cache  hot,  and probably is L1
cache hot.  Since the NIC’s input path will queue up to
50 packets  on it’s  input  path  by  default,  the  chance
that the previously queued mbufs will be evicted from
the L1 cache is high.  When the network protocol pro-
cesses the queued mbufs, they will have to be fetched
into L1 cache  again,  thus reducing  L1 cache  utiliza-
tion.

2.2. Direct input polling(4)

The main reason for  doing indirect input polling(4) is
that  the NIC RX ring’s  serializer  must be held when

the NIC RX ring’s polling handler is running; requeu-
ing input mbufs for network protocol processing pre-
vents the NIC RX ring’s serializer from being held for
too much time,  and also prevents  a  dangerous  dead-
lock against the NIC RX ring’s serializer.  Let’s inves-
tigate again why the NIC RX ring’s serializer  should
be held when the NIC RX ring’s polling handler is run-
ning.  It is used to prevent various races from happen-
ing if the NIC is brought down while the NIC RX ring
is  handling heavy input traffic.   The  NIC RX polling
handler is running in netisr and can be easily synchro-
nized  using a synchronous message.   As long as  the
NIC driver can  synchronize with the RX ring polling
handler on it’s stop path, RX ring’s serializer does not
need to be held before its polling handler, thus the net-
work  processing  can  run  directly  from  the  NIC RX
ring’s  input  path  without  worrying  about  the  issues
brought  about by the RX ring’s serializer.   The direct
input polling(4) is shown in Figure.6.

2.3. Resulting performance improvement

• IP  forwarding  performance  is  improved  by
10%~12%:

netisrN

Hold RX serializer
NIC_rxpoll(ifp1)
  NIC_rxeof(ifp1)
    Setup mbuf1
    Queue mbuf1
    Setup mbuf2
    Queue mbuf2
    Setup mbuf3
    Queue mbuf3
Release RX serializer

Dequeue mbuf1
ether_input_handler(mbuf1)
  ip_input(mbuf1)
    ip_forward(mbuf1)
      ip_output(mbuf1)
        ifp2->if_output(mbuf1)

Dequeue mbuf2
ether_input_handler(mbuf2)
  ip_input(mbuf2)
    ip_forward(mbuf2)
      ip_output(mbuf2)
        ifp3->if_output(mbuf2)

Dequeue mbuf3
ether_input_handler(mbuf3)
  ip_input(mbuf3)
    ip_forward(mbuf3)
      ip_output(mbuf3)
        ifp2->if_output(mbuf3)
    

netisrN
msgport

mbuf3

mbuf2

mbuf1

Figure.5



Before After

Normal 9.8Mpps 11.0Mpps

Fast 11.9Mpps 13.2Mpps

• Not much nginx HTTP request/response  im-
provement is observed, because unlike IP for-
warding, the TCP input and userland process-
ing takes the majority of the input processing
time.  For this path the only real improvement
is  that  the  latency  standard  deviation  is  re-
duced from 5.20ms to 4.60ms.

3. Kqueue(2) accept queue length report
In  all  BSDs  kqueue(2) reports  accept  queue  length
when  the  EVFILTER_READ  kevent  for  a  listen(2)
socket is ready.  Most of the userland applications ig-
nore kevent’s accept queue length by using nonblock-
ing listen(2)  socket  and polling until  nothing can  be
accepted:

kevent(kq, NULL, 0, &kvt, 1);

for (;;) {

    s = accept(ls, &addr, &addrlen);

    if (s < 0) {

        if (errno == EWOULDBLOCK)

            break;

    }

}

We have no cure for this kind of userland application.
However, some kqueue(2)-aware userland applications
use the accept queue length provided by kevent, most
noticeably nginx.  Nginx uses the accept queue length
like this:

do {

    s = accept(ls, &addr, &addrlen);

    /* Setup the accepted socket */

} while (--accept_queue_length);

The “Setup the accepted socket” part could be time
consuming, which may destabilize and increase HTTP
request  handling  latency,  if  the  connection  is  short-
lived and the accept queue length is too long.

3.1. Double edged sword: listen(2) socket’s backlog

The backlog of the listen(2)  socket  is used to absorb
temporary jitter and allows userland application to do
more work before calling accept(2), so setting this to a
low value,  e.g.  32,  will  cause  too  many  connection
drops.   However,  setting the  backlog  to  a  relatively
large value, e.g. 256, will also have a negative impact
on the  latency  of short-lived  request/response,  as we
have shown at the beginning of this section; the accept
queue length reported by the kqueue(2) can wind up
being very large.

3.2. Don’t be honest about the accept queue length

It’s actually quite simple to enjoy both the benefit of a
relatively large listen(2) socket backlog, while keeping
the time consumption of the accept(2) loop controlled.
We  just  put  an  upper  limit  on  how long an  accept
queue length kqueue(2) can report.  In DragonFlyBSD,
we added  a global  sysctl(9)  for this upper limit,  and
the  default  value  for  this  upper  limit  is  32.   It’s  ar-
guable  whether the  userland  application  should   en-
force an upper limit on the accept(2) loop, or whether
the kernel should put an upper limit on the kqueue(2)’s
accept queue length.  Currently, we believe it’s much
easier to do this on the kernel side, and all applications
can enjoy the improvement without modification.

3.3.  Resulting  performance  improvements and  latency
reduction

Nginx  HTTP  request/response  improvements  are
shown  in  Figure.7,  marked  as  FINAL.   We  borrow
CONFIG.B  and  CONFIG.A.24  from  section  1  for
comparison.  Compared  with  CONFIG.B,  where  we
started,  FINAL’s performance  is improved a bit,  and
the latency is greatly stabilized and reduced.

NIC_rxpoll(ifp1)
  NIC_rxeof(ifp1)
    Setup mbuf1
    ether_input_handler(mbuf1)
      ip_input(mbuf1)
        ip_forward(mbuf1)
          ip_output(mbuf1)
            ifp2->if_output(mbuf1)
    
    Setup mbuf2
    ether_input_handler(mbuf2)
      ip_input(mbuf2)
        ip_forward(mbuf2)
          ip_output(mbuf2)
            ifp3->if_output(mbuf2)
    
    Setup mbuf3
    ether_input_handler(mbuf3)
      ip_input(mbuf3)
        ip_forward(mbuf3)
          ip_output(mbuf3)
            ifp2->if_output(mbuf3)

Figure.6
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4.  Sending  aggregation  from the  network
stack
Various studies [3] have already shown that writing the
NIC TX ring’s doorbell register costs a lot on the send-
ing path.  Though most of the high performance driv-
ers  have  already  deployed  various  mechanism to re-
duce their TX ring’s doorbell  register  writing, the ef-
fectiveness  still  depends  a  lot  on how  the  network
stack  dispatches  the  packets  to  the  driver.   In many
cases, the network stack passes only one packet to the
driver  at a time,  e.g.  on the IP forwarding path,  thus
the TX ring’s doorbell  register ends up being written
for each packet.

4.1. Explicit sending aggregation in netisr

In  DragonFlyBSD,  we  don’t  call  driver’s  if_start()
method for each packet;  the packet  is just  queued to
the NIC TX ring’s IFQ.  IFQ maintains two counters: a
byte  counter  and  packet  counter,  which  count  how
many  bytes  and  packets  are  pending  for  sending.
These counters are updated when a packet is queued to
the IFQ, and are reset when the if_start() is called with
the IFQ.  The driver’s if_start() method will be called
with the IFQ, when either of the following conditions
meet:

• IFQ’s packet counter goes beyond a threshold,
which  is  controlled  by  a  sysctl(9).   The
threshold is 16 by default.

• IFQ’s  byte  counter  gets  greater  than  1500.
This threshold can’t be adjusted, and is heav-
ily influenced by CoDel’s settings.

• The netisr  is going to  sleep,  i.e.  there  is no
more  network  related  work  to  do.   This  is
achieved  through  a  registerable  ‘rollup’,
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Dequeue ifp1 RX ring[N] polling msg
NIC_rxpoll(ifp1, RX ring[N])
  NIC_rxeof(ifp1, RX ring[N])
    Setup mbuf1
    ether_input_handler(mbuf1)
      ip_input(mbuf1)
        ip_forward(mbuf1)
          ip_output(mbuf1)
            ifp2->if_output(mbuf1)
              Queue mbuf1 to ifp2.IFQ[N]
    Setup mbuf2
    ether_input_handler(mbuf2)
      ip_input(mbuf2)
        ip_forward(mbuf2)
          ip_output(mbuf2)
            ifp3->if_output(mbuf2)
              Queue mbuf2 to ifp3.IFQ[N]

netisrN.msgport has no more msgs

rollup1()
  // Flush pending aggregated TCP ACKs
  tcp_output(tcpcb1)
    ip_output(mbuf3)
      ifp2->if_output(mbuf3)
        Queue mbuf3 to ifp2.IFQ[N]
  tcp_output(tcpcb2)
    ip_output(mbuf4)
      ifp3->if_output(mbu4)
        Queue mbuf4 to ifp3.IFQ[N]

rollup2()
  // Flush pending mbufs on IFQs
  ifp2->if_start(ifp2.IFQ[N])
    Put mbuf1 to ifp2 TX ring[N]
    Put mbuf3 to ifp2 TX ring[N]
    Write ifp2 TX ring[N] doorbell reg
  ifp3->if_start(ifp3.IFQ[N])
    Put mbuf2 to ifp3 TX ring[N]
    Put mbuf4 to ifp3 TX ring[N]
    Write ifp3 TX ring[N] doorbell reg

Wait for more msgs on netisrN.msgport

netisrN

Figure.8



which is also used for TCP ACK aggregation.
The registered ‘rollup’ list will be called be-
fore  the  netisr  thread  blocks  for more  mes-
sages.   This  works,  since  all  network  sends
only  happen  via  netisrs  in  DragonFlyBSD.
This is shown in Figure.8.

• NIC TX ring’s interrupt happens.

Because  DragonFlyBSD’s  kernel  threads  (netisrs  are
plain kernel threads) are not preemptable by non-inter-
rupt kernel  threads, explicit sending aggregation does
not cause latency issues.

4.2. Resulting performance improvements

• IP forwarding performance improvement

pktcnt=4 pktcnt=16 (**)

Normal 11.0Mpps 11.3Mpps

Fast 13.8Mpps (*) 14.2Mpps

(*)  Increased  from  13.2Mpps  (as  shown  in
section 2.3) to 13.8Mpps, after mbuf objcache
caching limit was increased and Matthew Dil-
lon’s VM improvements.

(**)  Setting  pkgcnt  to  anything  above  16
gives  no  observable  performance  improve-
ment.

• No observable improvement for nginx HTTP
request/response, after the pktcnt is increased
from 4 to 16.

5. Per CPU IPFW states
In DragonFlyBSD, IPFW was made MPSAFE back in
2008.  At that time, the static rules were replicated to
each  netisr,  but  the  states  were  read-write-locked  as
shown in Figure.9.   This is mainly because the UDP
MPSAFE work was not ready in 2008: UDP input and
output for the same UDP 4-tuples were not running in
the same netisr; this was fixed in 2014.  Though read-
write-locked states work quite well for relatively per-
sistent  states,  e.g.  TCP connections on which several
HTTP requests/responses  are  exchanged,  the  perfor-
mance  degenerates  drastically  and  the  latency  in-
creases  dramatically  for  short-lived  states,  e.g.  TCP
connections  service  only  one  HTTP request/response
exchange, which is still quite common nowadays.

5.1. Independent per-CPU states

In DragonFlyBSD, the packets associated with a TCP/
UDP address/port  4-tuple  or  other  IP protocol’s  ad-
dress 2-tuple are  always processed in their respective
netisrs,  so  we  can  remove  the  read-write  state  lock
completely,  and  use  one  state  table  for  each  netisr;
they never interfere  with each other.  Each  state table
can  be  operated  (expand  and  shrink)  independently
and locklessly by their owning netisr as shown in Fig-
ure.10.  For short-lived states, this avoids both heavy
contention on the original  global  read-write  lock and
reduces cache-line bouncing between CPUs.

The  only  shared  datum  is  the  global  state  counter,
which prevents the total  number of states  from going

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state

1
2
3

0

State table
Global shared
Protected by rwlock

cpu0 cpu1 cpu2 cpu3

Figure.9



beyond a certain threshold.  This datum is loosely up-
dated, which allows 5% overflow.  Given that memory
is quite cheap nowadays, we believe this is fine.  The
loose update works like this:

• Each  state  table  has  a  per-netisr  counter,
which is updated when a state is installed or
removed.  This update is lockless.

• Once  per  state  table  counter  reaches  certain
threshold,  it  is  added  to  the  global  state
counter.  Since this does not happen often, the
effect  of  cache  trashing  by  updating  global
state  counter  should  be pretty  minimal.
Atomic operations are not used here though.

• At state  installation,  the global  state  counter
is checked, which is a read-only operation.  If
it  reaches  the  limit,  the  global  state  counter
will  be refreshed by merging all  of the state
counters  from  the  per-cpu  state  tables,  and
will  be checked against  the limit  again.  If it
broke its limit,  the current  CPU’s state table
will be GC’d first.  If there are still too many
states, IPIs are dispatched to all netisrs to GC
their own state tables.  This operation is con-
strained to once per second.  However,  on a
properly  configured  system, the  global  state
counter should not break its limit even when
operating at a high frequency.

This loose counter  updating  mechanism was initially
implemented  by  Matthew  Dillon  for  the  DragonFly-
BSD’s slab allocator, and was borrowed for IPFW and
a number of other kernel subsystems.

5.2. The ‘limit’

IPFW ‘limit’ command sets an upper limit for a set of
states based on the conditions configured by the user,
e.g.  10 states  for  a  given  address pair.   When IPFW
states  were  made  per-CPU,  the  ‘limit’ got  reworked
and  abstracted  into  two  tiers:  the  track  counter  tier,
which is globally shared,  and the track tier,  which is
per CPU.  The name ‘track’ is taken from pf(4).  The
track counter maintains the limit and a counter which
counts how many states are tracked by it.   The track
points to a track counter and maintains a list of states
tracked by it, as shown in Figure.11.  If a tracked state
is about to be installed, a track will be looked up lock-
lessly, since the track table is per-CPU, and the track
counter will be checked and updated using atomic-ops
through the track.  Contention can still happen in the
track counter tier, if a new track is being added to the
per-CPU  track  table,  or  the  last  track  of  the  track
counter is about to be removed.  Loose counter updat-
ing can’t be used for tracks, since the limit is usually
pretty low.
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5.3. Resulting  performance  improvements and  latency
reduction

The performance/latency evaluation was conducted us-
ing nginx HTTP request/response test.   IPFW  is run-
ning on the server side.  IPFW settings:

• The  maximum  number  of  read-writ-locked
states is set to 500K.  The hash table bucket
size is 64K.

• The maximum number of states for per-CPU
states is set to 100K (~14MB memory).   No
hash table settings, since per-CPU state tables
uses red-black trees.

• Two IPFW rules are added:

ipfw add 1 check-state

ipfw add allow tcp from any to me 80 setup keep-state

(default to deny)

The performance/latency comparison is shown in Fig-
ure.12.  The results of CONFIG.A.24 (section 1.4) are
shown as ‘no IPFW’, because the per-CPU IPFW state
was  implemented  immediately  after  the  changes  in
section 1.  Though there are some performance/latency
gaps between ‘no IPFW’ and ‘percpu state’,  they are
pretty  close.   When  ‘percpu  state’ is  compared  with
‘rwlock  state’,  you  can  see  that  the  performance  is
greatly improved, while latency is significantly  stabi-
lized and reduced.

5.4. State based redirection

Since the per-CPU states gave pretty good results, we
moved  on  and  tried  to  use  per-CPU states  to  build
NAT/redirection.   Redirection  has  been  implemented
as of  this writing, and NAT work is  still going on, so
only redirection will be described here.  Two states are
used  for  a  given  redirected  flow:  the  master  state  is
identified by {saddr:sport,  odaddr:odport},  i.e.  before
the  translation;  the  slave  state  is  identified  by

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state3

state1 state2

state0 state4

state5

State tableState table State table State table

cpu0 cpu1 cpu2 cpu3

Figure.11

track0

trackcnt0

state list

count ptr

count=6

Track table Track table

track1

state list

count ptr

Track table

track2

state list

count ptr

Track table

Track count table
Global shared
locked



{ndaddr:ndport, saddr:sport}, i.e. after the translation.
However, most often (almost 99% of the time),  these
two states will not be hashed to the same CPU, so we
need ways to:

• Install the slave state on the remote CPU. 

• Continue  walking  the  rules  on  the  remote
CPU after translation.

• Remove the slave  state  on the remote  CPU,
once the master state is deleted.

In order to achieve this at IPFW redirection rule cre-
ation  time,  we save  the  addresses  of  its  replica  into
each of the replicated rules, so that the corresponding
IPFW redirection rule on the remote CPU can be lo-
cated easily.  The initial translation for the redirection
is  shown in  Figure.13.   Each  IPFW redirection  rule
replica  maintains  a cross-reference  counter.   In  the
packet originating netisr, the cross-reference counter is
incremented by 1, while in the remote netisr,  i.e.  the
targeting netisr, the corresponding rule replica’s cross-
reference counter is decremented by 1.  The rule repli-
cas are only deleted in their respective  netisrs:  when
the sum of all IPFW redirection rule replicas reaches
0, the replicas are no longer referenced, and the IPFW
redirection  rule  replicas  can  be  freed  safely.   This
mechanism avoids expensive atomic reference count-
ing at high frequencies.  Deletion of states created by
IPFW redirection  rules is initiated by the deletion  of
master  state,  i.e.  the  slave  state  would never  initiate
deletion, even if the slave state expired.  Master state
deletion consists of 2 steps:

1. The master state is removed from its owning
per CPU state table.

2. The  master  state  is  dispatched  to  the  netisr
owning the  slave  state  for  the  final  destruc-
tion.

The  master/slave  states  also  deploy  cross  reference
counting  mechanism  themselves  to  make  sure  that
they  can  be  invalidated  timely,  and  inflight  packets
can still check them safely.

no IPFW percpu state rwlock state
0

50000

100000

150000

200000

250000

0

50

100

150

200

250

300

210658.8
191626.58

43481.19
58.01 64.74

153.76

Figure.12

performance

latency-avg

latency-stdev

latency-.99

R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)



5. Reference
[1] nginx, http://nginx.org/

[2] 10 years with DragonFlyBSD network stack,
https://leaf.dragonflybsd.org/~sephe/
AsiaBSDCon%20-%20Dfly.pdf

[3] netmap,  http://info.iet.unipi.it/~luigi/papers/
20120503-netmap-atc12.pdf

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

master
state

slave
state

state table state table

ip_input(mbuf)
  ipfw_chk(mbuf)
    Match redirect rule
    Create master state
    Link master state to redirect rule[M]
    Install master state
    Xlate mbuf
    Rehash mbuf
    Create slave state
    Link slave state to redirect rule[N]
    Tuck slave state into mbuf.netmsg
    Send mbuf.netmsg to netisrN

Dequeue mbuf.netmsg
ipfw_xlate_redispatch(mbuf.netmsg)
  ip_input(mbuf)
    ipfw_chk(mbuf)
      Install slave state
      Continue from redirect rule’s act
    ip_forward(mbuf)
      ip_output(mbuf)
        ipfw_chk(mbuf)
          Match slave state
          Xlate direction mismatch, no xlate
          Continue from redirect rule’s act
        ifp->if_output(mbuf)

netisrM netisrN

cpuM cpuN

Figure.13

https://leaf.dragonflybsd.org/~sephe/AsiaBSDCon%20-%20Dfly.pdf
https://leaf.dragonflybsd.org/~sephe/AsiaBSDCon%20-%20Dfly.pdf
http://nginx.org/

