Improving the DragonFlyBSD Network

Stack

Yanmin Qlao
sephe@dragonflybsd.org

DragonFlyBSD project

mailto:sephe@dragonflybsd.org

Nginx performance and latency evaluation:

HTTP/1.1, 1KB web object, 1 request/connect

Server:
2x E5-2620v2, 32GB DDR3-1600, Hyperthreading enabled.
Server
nginx:
Intel Intel
X550 X550 Installed from dports.
nginx.conf:
Access log is disabled. 16K connections/worker.
Intel Intel 15K concurrent connections on each client.
X540 X540
Client Client Qlient: .
i7-3770, 16GB DDR3-1600, Hyperthreading enabled.

MSL on clients and server are changed to 20ms by:
route change -net net -msl 20

/boot/loader.conf:
kern.ipc.nmbclusters=524288

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP
kern.ipc.somaxconn=256
net.inet.ip.portrange.last=40000

IPv4 forwarding performance evalution:

64B packets

pktgen+sink

Intel
X540

Intel
X550

forwarder

Intel
X550

Intel
X540

' pktgen+sink

v

pktgen+sink:
i7-3770, 16GB DDR3-1600,
Hyperthreading enabled.

forwarder:
2x E5-2620v2, 32GB DDR3-1600,
Hyperthreading enabled.

/boot/loader.conf:
kern.ipc.nmbclusters=5242880

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP

Traffic generator:
DragonFlyBSD’s in kernel packet generator, which
has no issue to generate 14.8Mpps.

Traffic sink:
ifconfig ix0@ monitor

Traffic:
Each pktgen targets 208 IPv4 addresses, which are
mapped to one link layer address on ‘forwarder’.

Performance counting:
Only packets sent by the forwarder are counted.

TOC

1
2
3
4
5

. Use all available CPUs for network processing.
. Direct input with polling(4).

. Kqueue(2) accept queue length report.

. Sending aggregation from the network stack.
. Per CPU IPFW states.

Use all available CPUs for network

processing

Issues of using only power-of-2 count of CPUs.
- On a system with 24 CPUs, only 16 CPUs will be used.

Bad for kernel-only applications: forwarding and bridging.

- Performance and latency of network heavy userland
applications can not be fully optimized.

-6, 10, 12 and 14 cores per CPU package are quite common
these days.

Use all available CPUs for network

processing (24 CPUs, 16 netisrs)

CONFIG.B: 32 nginx workers, no affinity.
CONFIG.A.16: 16 nginx workers, affinity.
None of them are optimal.

250000

200000

150000 -

Requests/s

100000 -

50000 -

0,

CONFIG.B

CONFIG.A.16

200

- 180

160

— 140
— 120
~ 100

Latency (ms)

[performance
—>— latency-avg
—¥— |atency-stdev
—— latency-.99

Use all available CPUs for network

processing

Host side is easy
(RSS hash & 127) % ncpus

How NIC RSS redirect table should be setup?
Simply do this?
tablell] = 1% nrings, I.e.

128 entries

-

0 1(2|3/4 5|6]7|8]9/10/11/12/13/14 15} 01 2/3/45|6/7|8/9/10/1112/13/14/15

Use all available CPUs for network

processing (NIC RSS redirect table)

Issue with table[i]=1%nrings
e.g. 24 CPUs, 16 RX rings.

First 48 entries

A
v

01234567 8/910111213141516/1718192021)2223/0/1/2/3/4/5|/6|7|8 9/101112/13/14151617181920212223

Host (RSS_hash&127)%ncpus

©/1/23/45/6/7/8/9106/11121314150 /1|2 3/4/5/6/7 8 91011121314150 /1|2 3|4 5/6|7 8 9101112131415

table[i]=i%nrings, 32 mismatches

grid (grid=ncpus/K, ncpus%K==0) grid

A A

012 3/45/6/7/8/9106/11121314150/1|2/3/4/5/6/7 0/12|3/4|5/6/7/8/9|1011/12]13/1415 8|9 161112131415

Current, 16 mismatches patch patch

.
I

Use all available CPUs for network

processing (result: nginx, 24 CPUs)

CONFIG.A.24: 24 nginx workers, affinity

250000 200
215907. 210658.8 180
200000 - 160
-~ 140
150000 120
%
2 - 100
=}
o
@ 100000 - 80
- 60
50000 40
20
0 0

CONFIG.B CONFIG.A.16 CONFIG.A.24

Latency (ms)

[performance
—— latency-avg
—¥— latency-stdev
—— latency-.99

Use all available CPUs for network

processing (result: forwarding)

12.5
12
1.5

10.5
10
9.5

©

8.5

oo

7.5

~

6.5 H 16 CPUs

m 24 CPUs

Mpps
o

5.5

(&)

4.5

IS

3.5

w

2.5

N

15

=

0.5

Fast forwarding Normal forwarding

Use all available CPUs for network

processing

iIf ringmap APIs for drivers
iIf ringmap_alloc(), if ringmap_alloc2(), if ringmap_free()

Allocate/free a ringmap. if ringmap_alloc2() for NICs requiring power-of-
2 count of rings, e.qg. jme(4).

if ringmap_align()

If N _txrings!'=N _rxrings, it makes sure that TX ring and the respective RX
rng are assigned to the same CPU. Required by bce(4) and bnx(4).

if ringmap_match()

If N _txrings!'=N rxrings, it makes sure that distribution of TX rings and RX
rngs is more even. Used by igb(4) and ix(4).

if ringmap _cpumap(), if ringmap_rdrtable()
Get ring CPU binding information, and RSS redirect table.

TOC

1
2
3
4
5

. Use all available CPUs for network processing.
. Direct input with polling(4).

. Kqueue(2) accept queue length report.

. Sending aggregation from the network stack.
. Per CPU IPFW states.

Direct input with polling(4)

netisrN
net-iS rN msgport

Hold RX serializer

- Hold RX ring serializer.
) o NIC rxpoll(ifpl)
Mainly for stability, nggzﬁgf’;gﬁfg”

Queue mbufl
Setup mbuf2

l.e. bring down NIC when there are gueue mur2
etup mbu
Queue mbuf3

h ea Vy RX tra f_ﬁ C. Release RX serializer

[)GE(JLJGELJGE rnk)l] f l “.E -----------------------
ether _input _handler(mbufl)

- Have to requeue the mbufs. ip. Tnput (Abyr)

ip_forward(mbufl)

) . ip_output (mbufl) H

To avold dangerous deadlock against ifp2->if output(mbufl) .
. . . Dequeue mbuf2 <=
RX N g Serla | |ZET. ether input _handler(mbuf2)
ip_input(mbuf2)
ip_forward(mbuf2)
ip_output(mbuf2)
ifp3->if_output (mbuf2)...”

.
.
wen®
wer

Dequeue mbuf3 &

ExceSSive L1 caChe eViction ether_input_handler(mbuf3)

ip_input(mbuf3)
ip forward(mbuf3)
ip output(mbuf3)

and refetching. To2ni output (mbuf3)

Direct input with polling(4)

- Driver synchronizes netisrs regien

- NIC rxpoll(ifpl) -
at stop time. NIC rxeof (1fp1)
Setup mbufl
- - ether_input_handler(mbufl)
- ip input(mbufl)
Then holding RX ring [nput(nbut)
ip output(mbufl)

serializer is no longer needed. ifp2->if_output (mbuf1)

Setup mbuf2
= = ether_input handler(mbuf2)
- Mb“f requeUIng IS nOt ip input(mbuf2)
ip forward(mbuf2)
ip output(mbuf2)

necessa ry- ifp3->if output(mbuf2)

Setup mbuf3
ether _input handler(mbuf3)
ip input(mbuf3)
ip forward(mbuf3)
ip output(mbuf3)
ifp2->if output(mbuf3)

Direct input with polling(4)

(result: forwarding)

14
13.5
13
12.5
12
1.5

10.5
10
9.5

©

8.5

[e¢]

7.5

~

Mpps

6.5

»

55

a1

4.5

N

3.5

w

2.5

N

15

=

0.5

Fast forwarding Normal forwarding

TOC

1
2
3
4
5

. Use all available CPUs for network processing.
. Direct input with polling(4).

. Kqueue(2) accept queue length report.

. Sending aggregation from the network stack.
. Per CPU IPFW states.

Kgueue(2) accept queue length report

Applications, e.g. nginx, utilize kqueue(2)
reported accept queue length like this:

do {
s = accept(ls, &addr, &addrlen);
/* Setup accepted socket. */

} while (--accept queue length);

The Setup accepted socket part:
- Time consuming.

- Destablilize and increase request handling latency.

I

Kgueue(2) accept queue length report

Backlog of listen(2) socket.
Major factor affects kqueue(2) accept queue length report.

Low listen(2) socket backlog.
e.g. 32, excessive connection drops.

High listen(2) socket backlog.
e.g. 2506, destabilize and increase request handling latency.

Kgueue(2) accept queue length report

The solution:

- Leave listen(2) backlog high, e.g. 256.

- Limit the accept queue length from kqueue(2),
e.g. 32. Simple one liner change.

Kqgueue(2) accept queue length report

(result: nginx, 24 CPUs)

FINAL: 24 nginx workers, affinity, accept queue
length reported by kqueue(2) is limited to 32.

250000 200

217599.01 - 180

210658.8

200000 - - 160

~ 140

150000 -

-~ 120

X ’g [performance
% - 100 ‘g —>— latency-avg
GS)- & —¥— latency-stdev
@ 100000 - 80 = —— |atency-.99
- 60
50000 - 40

- 20

0 -0

I I
CONFIG.B CONFIG.A.24 FINAL

TOC

1
2
3
4
5

. Use all available CPUs for network processing.
. Direct input with polling(4).

. Kqueue(2) accept queue length report.

. Sending aggregation from the network stack.
. Per CPU IPFW states.

Sending aggregation from the network

stack

- High performance drivers have already
deployed mechanism to reduce TX ring doorbell
writes.

- The effectiveness of the drivers’ optimization

depends on how network stack feeds the
packets.

Sending aggregation from the network

stack

netisrN

P rec 0 n d it i O n S : Dequeue ifpl RX ring§[N1 polling msg

NIC rxpoll(ifpl, RX ring[N])
NIC rxeof(ifpl, RX ring[N])
Setup mbufl

= = - ther_input handler(mbufl)
- All packet sending runs in netisrs. U™
ip_output(mbufl)

ifp2->if output(mbufl)

- Ordered ‘rollup’: e e L 5 552 12000

ether_input_handler(mbuf2)
ip_input(mbuf2)
ip_forward(mbuf2)

Protocols register ‘rollup’ function. e Metaue abura

Queue mbuf2 to ifp3.IFQ[N
netisrN.msgport has no more msgs

TCP ACK aggregation ‘rollup’ with higher priority. -
// Elush pending aggregated TCP ACKs

Sending aggregation ‘rollup’ with lower priority. “?aigﬁgzﬁégﬁﬁﬁ?éi(m
ifp2->if output(mbu
Queue mbuf3 to ifp2.IFQ[N

Rollups are called when: sttt

ifp3->if output(mbu4)
Queue mbuf4 to ifp3.IFQ[N

No more netmsg. ol lup2()

// Flush pending mbufs on IFQs
ifp2->if start(ifp2.IFQ[N])
Put mbufl to ifp2 TX ring[N]
32 HEthgS are handled Put mbuf3 to ifp2 TX ring[N]
Write ifp2 TX ring[N] doorbell reg
ifp3->if start(ifp3.IFQ[N])
Put mbuf2 to ifp3 TX ring[N]

Put mbuf4 to ifp3 TX ring[N]
Write ifp3 TX ring[N rbell r

it f isrl

Sending aggregation from the network

stack (result: forwarding)

Mpps

14.4
14.2

14
13.8
13.6
13.4
13.2

13
12.8
12.6
12.4
12.2

12
11.8
1.6
11.4
11.2

10.8
10.6
10.4
10.2
10
9.8
9.6
9.4
9.2

Fast forwarding

Normal forwarding

M aggregate 4
M aggregate 16

TOC

1
2
3
4
5

. Use all available CPUs for network processing.
. Direct input with polling(4).

. Kqueue(2) accept queue length report.

. Sending aggregation from the network stack.
. Per CPU IPFW states.

Per CPU IPFW states

IPFW states were rwlocked, even if IPFW rules
were per CPU.

cpuo cpul cpu2 cpu3
P : State table ~ |
A B Global shared B
S ? : Protected by rwlock: |
(. 2 : : ‘
. 34 '
AN H
rule@ heamun -------; ---------- > rule@ [--------;. --------- > rule@ [--------;. --------- > rule@
rule]_ ..-..--------.; ---------- > rulel ...----------? --------- > rulel ...----------? --------- > rulel
Default Default Default Default
rule 'E > ru]_e§ > ru]_eg.. > ru]_e

Per CPU IPFW states

- UDP was RSS hash aware in 2014.
Prerequisite for per CPU IPFW state.

- Rwlocked IPFW states work pretty well, if the

states are relatively stable.
e.g. long-lived HTTP/1.1 connections.

- Rwlocked IPFW states suffer a lot for short

lived states; r/w contention.
e.g. short-lived HTTP/1.1 connections.

E—

Per CPU IPFW states

global state counter

cpud A A cpul T cpu2 cpu3
“State table ~‘,~': State table ' /§-__tate table ’ /é‘-‘:tate table =
. counter creeee AN A * counter \ ' counter \ e *counter \
/ ' / ‘ / . / .
‘ s ‘ ‘ state3 ‘ ‘ ‘
i , | ‘ ,
\ ‘ statel ‘ ‘ state2 ‘ I ' / : / '
N s ' P . 4 ' N N . '
rule@ rule@ ----------------------------- > rule@ rule@
- e
rulel rulel --------------- Brrssnnsnnnnnn > rulel --------------- Brassssamnns > rulel
Y v v Y
Default Default Default Default
rule » ru'l_e » rule » rule

Per CPU IPFW states

Loose state counter update
- Implemented by Matthew Dillon for DragonFlyBSD's slab
Allocator. It avoids expensive atomic operations.
- Per CPU state counter.

Updated when states are installed/removed from the respective CPU.
- Per CPU state counter will be added to global state counter,

once it i1s above a threshold.
- Per CPU state counters will be re-merged into global state

counter, If the global state counter goes beyond the limit.

- Allow 5% overflow.

Per CPU IPFW states (limit rule)

—
—

Track count table ™
/ Global shared

locked !
v trackcnt0
. count=6 |4

Track counter tier

cpu3 Track tier

cpu2

cpuo cpul
- Track table o - Track table o - Track table » . - Track table o .
[tracke trackl track2 ‘
: state list O : N <state list ~< state list /
~ _count ptr —F . o ~— count ptr | - count ptr | -
~ State table i i .~ State table - {7 State table - i i state table °

L i K N 7 N g — -

| N I S N ;
\-) E \‘ '/ E \‘ '/ H AN ’/
rule@ ------------ .; ---------- -» rule@ -------------- .; ------------ > ru'l_eo ------------- é ----------- > rule@
rulel - rulel > rulel oo | rulel il
v v v
Default Default Default Default
ule > ule » ule > ule

Per CPU IPFW states (result:

On server running nginx:
ipfw add 1 check-state

ipfw add allow tcp from any to me 80 setup keep-state

250000 300
210658.8
200000 191626.58 250
~ 200
150000 -
2 153.76
8 / - 150
>
g
@ 100000
- 100
50000 - 43481.19
- 50
o 0

no IPFW percpu state rwlock state

Latency (ms)

[performance
—¢— latency-avg
—¥— latency-stdev
—— latency-.99

Per CPU IPFW states (redirect)

Match slave state ="'

Xlate direction mismatch, no xlate
Continue from redirect rule’s act

ifp->if output(mbuf)

cpuM : cpuN
state table " . * state table - \
master , H | slave
state , : P> state
> H - —
ruled ruled
redirect ———— : —P{ redirect 5
vA: 3 B + | B U R
: N i N : p i
rulel : : : : rulel : H EH
default | | : default | % g
rule : : rule H : H
netisrM netisrN é
“-_-_1p_input(mbuf)) : ~':
ipfw_chk(mbuf) : : : S H
Match redirect rule” : H 3 i
Create master state : ; R 3
* Link master state to redirect rule[M] : : o i
* Install master state : P H I
Xlate mbuf : R : S
Rehash mbuf : et H ol
Create slave state : TR : : i
Link slave state to redirect rule[N] =f===*="*""" : : S d
Tuck slave state into mbuf.netmsg : : : s f
Send mbuf.netmsg to netisrN * : G
: Dequeue mbuf.netmsg e
i ipfw_xlate_redispatch(mbuf.netmsy) B
: ip_input(mbuf) o g
ipfw_chk(mbuf) RO g
: Install slave state * : s
: Continue from redirect rule’s act
: ip forward(mbuf) &
: ip_output(mbuf) K
H ipfw_chk(mbuf) o

Performance Impact of

@ £y

MELTDOWN SPECTRE
s

Performance Impact of

Meltdown and Spectre

250000 60
224082.8 54.43
51.12
201859.11 47.45 50
200000 -
- 40
154723.94
150000 145031.1
0 ’g [performance
% - 30 :; —>— latency-avg
= € —¥—latency-stdev
& L5 —— latency-.99
100000 s atency-.
- 20
50000
- 10
0 -0

base meltdown spectre melt+spectre

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

