
Improving the DragonFlyBSD Network
Stack

Yanmin Qiao
sephe@dragonflybsd.org

DragonFlyBSD project

mailto:sephe@dragonflybsd.org

2

Nginx performance and latency evaluation:
HTTP/1.1, 1KB web object, 1 request/connect

Server

Intel
X550

Client

Intel
X540

Client

Intel
X550

15K concurrent connections on each client.

Client:
i7-3770, 16GB DDR3-1600, Hyperthreading enabled.

Server:
2x E5-2620v2, 32GB DDR3-1600, Hyperthreading enabled.

nginx:
Installed from dports.

nginx.conf:
Access log is disabled. 16K connections/worker.

MSL on clients and server are changed to 20ms by:
route change -net net -msl 20

/boot/loader.conf:
kern.ipc.nmbclusters=524288

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP
kern.ipc.somaxconn=256
net.inet.ip.portrange.last=40000

Intel
X540

3

IPv4 forwarding performance evalution:
64B packets

forwarder

Intel
X550

Intel
X550

pktgen+sink

Intel
X540

Intel
X540

pktgen+sink

forwarder:
2x E5-2620v2, 32GB DDR3-1600,
Hyperthreading enabled.

pktgen+sink:
i7-3770, 16GB DDR3-1600,
Hyperthreading enabled.

/boot/loader.conf:
kern.ipc.nmbclusters=5242880

/etc/sysctl.conf:
machdep.mwait.CX.idle=AUTODEEP

Traffic generator:
DragonFlyBSD’s in kernel packet generator, which
has no issue to generate 14.8Mpps.

Traffic sink:
ifconfig ix0 monitor

Traffic:
Each pktgen targets 208 IPv4 addresses, which are
mapped to one link layer address on ‘forwarder’.

Performance counting:
Only packets sent by the forwarder are counted.

4

TOC

1. Use all available CPUs for network processing.

2. Direct input with polling(4).

3. Kqueue(2) accept queue length report.

4. Sending aggregation from the network stack.

5. Per CPU IPFW states.

5

Use all available CPUs for network
processing

Issues of using only power-of-2 count of CPUs.

- On a system with 24 CPUs, only 16 CPUs will be used.

Bad for kernel-only applications: forwarding and bridging.

- Performance and latency of network heavy userland

 applications can not be fully optimized.

- 6, 10, 12 and 14 cores per CPU package are quite common

 these days.

6

Use all available CPUs for network
processing (24 CPUs, 16 netisrs)

CONFIG.B: 32 nginx workers, no affinity.

CONFIG.A.16: 16 nginx workers, affinity.

None of them are optimal.

CONFIG.B CONFIG.A.16
0

50000

100000

150000

200000

250000

0

20

40

60

80

100

120

140

160

180

200

215907.25

191920.81

33.11 32.04

performance

latency-avg

latency-stdev

latency-.99R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

7

Use all available CPUs for network
processing

Host side is easy

(RSS_hash & 127) % ncpus

How NIC RSS redirect table should be setup?

Simply do this?

table[i] = i % nrings, i.e.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

128 entries

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

8

Use all available CPUs for network
processing (NIC RSS redirect table)

Issue with table[i]=i%nrings

e.g. 24 CPUs, 16 RX rings.

0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 8 9 101112131415

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223 0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223

0 1 2 3 4 5 6 7 8 9 101112131415 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 101112131415 8 9 101112131415

Host (RSS_hash&127)%ncpus

table[i]=i%nrings, 32 mismatches

Current, 16 mismatches

First 48 entries

grid (grid=ncpus/K, ncpus%K==0)

patch

grid

patch

9

Use all available CPUs for network
processing (result: nginx, 24 CPUs)

CONFIG.A.24: 24 nginx workers, affinity

CONFIG.B CONFIG.A.16 CONFIG.A.24
0

50000

100000

150000

200000

250000

0

20

40

60

80

100

120

140

160

180

200

215907.25

191920.81

210658.8

33.11 32.04

58.01

performance

latency-avg

latency-stdev

latency-.99R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

10

Use all available CPUs for network
processing (result: forwarding)

Fast forwarding Normal forwarding
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5

16 CPUs

24 CPUsM
p

p
s

11

Use all available CPUs for network
processing

if_ringmap APIs for drivers

if_ringmap_alloc(), if_ringmap_alloc2(), if_ringmap_free()

Allocate/free a ringmap. if_ringmap_alloc2() for NICs requiring power-of-
2 count of rings, e.g. jme(4).

if_ringmap_align()

If N_txrings!=N_rxrings, it makes sure that TX ring and the respective RX
ring are assigned to the same CPU. Required by bce(4) and bnx(4).

if_ringmap_match()

If N_txrings!=N_rxrings, it makes sure that distribution of TX rings and RX
rings is more even. Used by igb(4) and ix(4).

if_ringmap_cpumap(), if_ringmap_rdrtable()

Get ring CPU binding information, and RSS redirect table.

12

TOC

1. Use all available CPUs for network processing.

2. Direct input with polling(4).

3. Kqueue(2) accept queue length report.

4. Sending aggregation from the network stack.

5. Per CPU IPFW states.

13

Direct input with polling(4)

- Hold RX ring serializer.

Mainly for stability,

i.e. bring down NIC when there are

heavy RX traffic.

- Have to requeue the mbufs.

To avoid dangerous deadlock against

RX ring serializer.

Excessive L1 cache eviction

and refetching.

netisrN

Hold RX serializer
NIC_rxpoll(ifp1)
 NIC_rxeof(ifp1)
 Setup mbuf1
 Queue mbuf1
 Setup mbuf2
 Queue mbuf2
 Setup mbuf3
 Queue mbuf3
Release RX serializer

Dequeue mbuf1
ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)

Dequeue mbuf2
ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)

Dequeue mbuf3
ether_input_handler(mbuf3)
 ip_input(mbuf3)
 ip_forward(mbuf3)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)

netisrN
msgport

mbuf3

mbuf2

mbuf1

14

Direct input with polling(4)

- Driver synchronizes netisrs

 at stop time.

- Then holding RX ring

 serializer is no longer needed.

- Mbuf requeuing is not

 necessary.

NIC_rxpoll(ifp1)
 NIC_rxeof(ifp1)
 Setup mbuf1
 ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)

 Setup mbuf2
 ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)

 Setup mbuf3
 ether_input_handler(mbuf3)
 ip_input(mbuf3)
 ip_forward(mbuf3)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)

netisrN

15

Direct input with polling(4)
(result: forwarding)

Fast forwarding Normal forwarding
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5
7

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

12.5
13

13.5
14

requeue

directM
p

p
s

16

TOC

1. Use all available CPUs for network processing.

2. Direct input with polling(4).

3. Kqueue(2) accept queue length report.

4. Sending aggregation from the network stack.

5. Per CPU IPFW states.

17

Kqueue(2) accept queue length report

Applications, e.g. nginx, utilize kqueue(2)
reported accept queue length like this:

do {

 s = accept(ls, &addr, &addrlen);

 /* Setup accepted socket. */

} while (--accept_queue_length);

The Setup accepted socket part:

- Time consuming.

- Destabilize and increase request handling latency.

18

Kqueue(2) accept queue length report

Backlog of listen(2) socket.

Major factor affects kqueue(2) accept queue length report.

Low listen(2) socket backlog.

e.g. 32, excessive connection drops.

High listen(2) socket backlog.

e.g. 256, destabilize and increase request handling latency.

19

Kqueue(2) accept queue length report

The solution:

- Leave listen(2) backlog high, e.g. 256.

- Limit the accept queue length from kqueue(2),

 e.g. 32. Simple one liner change.

20

Kqueue(2) accept queue length report
(result: nginx, 24 CPUs)

FINAL: 24 nginx workers, affinity, accept queue
length reported by kqueue(2) is limited to 32.

CONFIG.B CONFIG.A.24 FINAL
0

50000

100000

150000

200000

250000

0

20

40

60

80

100

120

140

160

180

200

215907.25
210658.8

217599.01

33.11

58.01

32

performance

latency-avg

latency-stdev

latency-.99R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

21

TOC

1. Use all available CPUs for network processing.

2. Direct input with polling(4).

3. Kqueue(2) accept queue length report.

4. Sending aggregation from the network stack.

5. Per CPU IPFW states.

22

Sending aggregation from the network
stack

- High performance drivers have already

 deployed mechanism to reduce TX ring doorbell

 writes.

- The effectiveness of the drivers’ optimization

 depends on how network stack feeds the

 packets.

23

Sending aggregation from the network
stack

Preconditions:

- All packet sending runs in netisrs.

- Ordered ‘rollup’:

Protocols register ‘rollup’ function.

TCP ACK aggregation ‘rollup’ with higher priority.

Sending aggregation ‘rollup’ with lower priority.

Rollups are called when:

No more netmsg.

32 netmsgs are handled.

Dequeue ifp1 RX ring[N] polling msg
NIC_rxpoll(ifp1, RX ring[N])
 NIC_rxeof(ifp1, RX ring[N])
 Setup mbuf1
 ether_input_handler(mbuf1)
 ip_input(mbuf1)
 ip_forward(mbuf1)
 ip_output(mbuf1)
 ifp2->if_output(mbuf1)
 Queue mbuf1 to ifp2.IFQ[N]
 Setup mbuf2
 ether_input_handler(mbuf2)
 ip_input(mbuf2)
 ip_forward(mbuf2)
 ip_output(mbuf2)
 ifp3->if_output(mbuf2)
 Queue mbuf2 to ifp3.IFQ[N]

netisrN.msgport has no more msgs

rollup1()
 // Flush pending aggregated TCP ACKs
 tcp_output(tcpcb1)
 ip_output(mbuf3)
 ifp2->if_output(mbuf3)
 Queue mbuf3 to ifp2.IFQ[N]
 tcp_output(tcpcb2)
 ip_output(mbuf4)
 ifp3->if_output(mbu4)
 Queue mbuf4 to ifp3.IFQ[N]

rollup2()
 // Flush pending mbufs on IFQs
 ifp2->if_start(ifp2.IFQ[N])
 Put mbuf1 to ifp2 TX ring[N]
 Put mbuf3 to ifp2 TX ring[N]
 Write ifp2 TX ring[N] doorbell reg
 ifp3->if_start(ifp3.IFQ[N])
 Put mbuf2 to ifp3 TX ring[N]
 Put mbuf4 to ifp3 TX ring[N]
 Write ifp3 TX ring[N] doorbell reg

Wait for more msgs on netisrN.msgport

netisrN

24

Sending aggregation from the network
stack (result: forwarding)

Fast forwarding Normal forwarding
9

9.2
9.4
9.6
9.8
10

10.2
10.4
10.6
10.8

11
11.2
11.4
11.6
11.8

12
12.2
12.4
12.6
12.8

13
13.2
13.4
13.6
13.8

14
14.2
14.4

aggregate 4

aggregate 16M
p

p
s

25

TOC

1. Use all available CPUs for network processing.

2. Direct input with polling(4).

3. Kqueue(2) accept queue length report.

4. Sending aggregation from the network stack.

5. Per CPU IPFW states.

26

Per CPU IPFW states

IPFW states were rwlocked, even if IPFW rules
were per CPU.

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state

1
2
3

0

State table
Global shared
Protected by rwlock

cpu0 cpu1 cpu2 cpu3

27

Per CPU IPFW states

- UDP was RSS hash aware in 2014.

Prerequisite for per CPU IPFW state.

- Rwlocked IPFW states work pretty well, if the

 states are relatively stable.

e.g. long-lived HTTP/1.1 connections.

- Rwlocked IPFW states suffer a lot for short

 lived states; r/w contention.

e.g. short-lived HTTP/1.1 connections.

28

Per CPU IPFW states

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state3

state1 state2

state0 state4

state5

State table
counter

State table
counter

State table
counter

State table
counter

global state counter

cpu0 cpu1 cpu2 cpu3

29

Per CPU IPFW states

Loose state counter update

- Implemented by Matthew Dillon for DragonFlyBSD’s slab

 Allocator. It avoids expensive atomic operations.

- Per CPU state counter.

Updated when states are installed/removed from the respective CPU.

- Per CPU state counter will be added to global state counter,

 once it is above a threshold.

- Per CPU state counters will be re-merged into global state

 counter, if the global state counter goes beyond the limit.

- Allow 5% overflow.

30

Per CPU IPFW states (limit rule)

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

rule0

rule1

Default
rule

state3
state1 state2

state0 state4

state5

State tableState table State table State table

cpu0 cpu1 cpu2 cpu3

track0

trackcnt0

state list
count ptr

count=6

Track table Track table

track1
state list
count ptr

Track table

track2
state list
count ptr

Track table

Track count table
Global shared
locked

Track counter tier

Track tier

31

Per CPU IPFW states (result: nginx)

On server running nginx:

ipfw add 1 check-state

ipfw add allow tcp from any to me 80 setup keep-state

no IPFW percpu state rwlock state
0

50000

100000

150000

200000

250000

0

50

100

150

200

250

300

210658.8

191626.58

43481.19
58.01 64.74

153.76 performance

latency-avg

latency-stdev

latency-.99R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

32

Per CPU IPFW states (redirect)

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

rule1

default
rule

rule0

0
:
M
N
:

redirect
rule

master
state

slave
state

state table state table

ip_input(mbuf)
 ipfw_chk(mbuf)
 Match redirect rule
 Create master state
 Link master state to redirect rule[M]
 Install master state
 Xlate mbuf
 Rehash mbuf
 Create slave state
 Link slave state to redirect rule[N]
 Tuck slave state into mbuf.netmsg
 Send mbuf.netmsg to netisrN

Dequeue mbuf.netmsg
ipfw_xlate_redispatch(mbuf.netmsg)
 ip_input(mbuf)
 ipfw_chk(mbuf)
 Install slave state
 Continue from redirect rule’s act
 ip_forward(mbuf)
 ip_output(mbuf)
 ipfw_chk(mbuf)
 Match slave state
 Xlate direction mismatch, no xlate
 Continue from redirect rule’s act
 ifp->if_output(mbuf)

netisrM netisrN

cpuM cpuN

33

Performance Impact of

34

Performance Impact of
Meltdown and Spectre

base meltdown spectre melt+spectre
0

50000

100000

150000

200000

250000

0

10

20

30

40

50

60

224082.8

201859.11

154723.94
145031.1

29.68

33.46

44.43

47.45

4.16 4.22 4.78 5.05

35

39.9

51.12

54.43

performance

latency-avg

latency-stdev

latency-.99R
e

q
u

e
st

s/
s

L
a

te
n

cy
 (

m
s)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

