
Pro�le and reorder code execution in Geant4 to
increase performance

A Google Summer of Code Project

Stathis Kamperis

Department of Physics

Aristotle University of Thessaloniki

Greece

ekamperi@gmail.com

July, 2012

.

.

Overview

Geant4

Large source code base

Lots of classes

Highly conditionalized code

Complex numerical calculations

Full CMS

Complex geometry and physics

Very low visibility to the runtime aspects of the simulations

.

Pro�ling targets

Full CMS experiment

Simpli�ed Calorimeter

Faster initialization, faster pro�ling cycles
Simpler Geometry

Useful for examining how geometry a�ects performance

Examples bundled with Geant4

.

Pro�ling tools

Ported Geant4 to Solaris 11/x64

DTrace

A dynamic tracing framework
Available also in Mac OSX (an o�cially supported platform by
Geant4)
Fine-grained pro�ling

mdb (Modular debugger)

cputrack

Access CPU performance counters
data cache misses, instruction cache misses, branch
mispredictions, ...

libumem

pbind (to bind pro�led process to a speci�c CPU)

A pseudo device driver to invalidate CPU caches on demand

Visualisation tools and Statistics

gnuplot, ggplot2, R

.

Pro�ling tools - Alternatives

Not propagandizing in favor of Solaris

Alternatives for Linux users:

DTrace → SystemTap

mdb → gdb

cputrack → perf, cachegrind

libumem → valgrind

pbind → taskset

The rest are common for both platforms (visualisation and
statistics)

.

DTrace

pid provider

Flamegraphs

USDT (user-level statically de�ned tracing)

Speculative tracing

All of the above combined

.

Particle "bunching"

De�nition Process same particle types before switching to another
particle type. E.g.,

e−, e−, . . . , e−, γ, γ, . . . , γ, . . .

Why Better cache utilisation

Number of stacks we are using: 5

1 Primary particles + everything not belonging to:

2 Neutrons

3 Electrons

4 Gammas

5 Positrons

.

Particle "bunching" - Problems

Problems

Stacks can grow very large

e.g., when processing electrons, the gamma stack explodes,
and vice versa

So we have to restrict them, which leads to another problem

What is the optimal size for each one?
How much aggressively should we process a track, once it
reached its upper limit ?

.

Particle "bunching" - Problems cont.

If we allow too large sizes

we diverge a lot in terms of geometry (it hurts)

If we allow too small sizes

we switch too often between stacks, and we thrash (it hurts)

.

DTrace - Simple examples 1

How many times does the G4Allocator grow in size during 100
simulated events ?

dtrace -n ’
pid$target::*G4AllocatorPool*Grow*:entry
{

@ = count();
}’ -c ’/home/stathis/geant4.9.5.p01/bin/full_cms ./bench1_100.g4’

5921

How much time do the above resizes consume ?

dtrace -n ’
pid$target::*G4AllocatorPool*Grow*:entry
{

self->ts = vtimestamp;
}

pid$target::*G4AllocatorPool*Grow*:return
/self->ts/
{

@ = sum((vtimestamp - self->ts)/1000);
self->ts = 0;

}’ -c ’/home/stathis/geant4.9.5.p01/bin/full_cms ./bench1_100.g4’
4859 # ~5 msec

.

DTrace - Simple examples 2

How do we skip the initialization part of Geant4/Full CMS ?

Use a predicate that checks whether we are inside the
DoEventLoop()

dtrace -n ’
BEGIN
{

tracing = 0;
}

pid$target::*DoEventLoop*:entry { tracing = 1; }
pid$target::*DoEventLoop*:return { exit(0); }

someprobe
/tracing != 0/
{

...
}
’ -c ’/home/stathis/geant4.9.5.p01/bin/full_cms ./bench_100.g4’

.

USDT (user-level statically de�ned tracing)

Allows to place custom probe points in application code

Available both in development and production builds

No need to recompile with a debug �ag set

DTrace dynamically activates the probes when asked

By dynamically modifying the instructions of the pro�led app

Negligible overhead when not in use (a few NOPs)

Take advantage of DTrace rich reporting capabilities
(aggregations)

.

USDT - Example 1

Objective Everytime we push a track to the track manager or we
pop one from it, dump the sizes of all stacks.

dtrace -qn ’
simple$target:::
{

printf("%s track=%d size=%d\n", probefunc, arg0, arg1);
}’
-c ’/home/stathis/geant4.9.5.p01/bin/mainStatAccepTest ./exercise.g4’ | c++filt -np
...
G4SmartTrackStack::PushToStack track=0 size=1
G4SmartTrackStack::PopFromStack track=0 size=0
G4SmartTrackStack::PushToStack track=2 size=1
G4SmartTrackStack::PushToStack track=2 size=2
G4SmartTrackStack::PushToStack track=2 size=3
G4SmartTrackStack::PushToStack track=0 size=1
...
G4SmartTrackStack::PopFromStack track=2 size=446
G4SmartTrackStack::PopFromStack track=2 size=445
G4SmartTrackStack::PopFromStack track=2 size=444
G4SmartTrackStack::PopFromStack track=2 size=443

.

USDT - Example 2

Objective Print the distribution of stack sizes for unclassi�ed
particles (primaries + any particle not beloning to the set
n0, e−, γ, e+

dtrace -qn ’
simple$target:::
/arg0==1/
{

@["distribution of 1st stack’s size"] = quantize(arg1);
}’ -c ’/home/stathis/geant4.9.5.p01/bin/mainStatAccepTest ./exercise.g4’
^C
distribution of 1st stack’s size

value ------------- Distribution ------------- count
-1 | 0
0 | 111
1 | 308
2 |@ 963
4 |@ 2241
8 |@@ 3193
16 |@@@ 4452
32 |@@@@@ 7700
64 |@@@@@@@@@@ 15574
128 |@@@@@@@@@@@@@@@ 23497
256 |@@@ 4459
512 | 0

.

USDT - Example 3

Objective Visualize the size of stacks and the total energy of their
particles

The following graph is from a simulation of 2 events in Full CMS:

.

Speculative tracing - Introduction

De�nition The ability to tentatively trace data and then later
decide whether to commit the data to a tracing bu�er or discard it.

From DTrace guide

.

Speculative tracing - A real use case

Problem Some ProcessOneEvent() need more than average time
to complete

.

Speculative tracing - A real use case

Strategy We are going to trace all ProcessOneEvent() calls, but
commit to our tracing bu�er only those that behave bad.

.

Flame graphs

De�nition Flame graphs are a visualization method for sampled
stack traces

.

Flame graphs

Scope Anything that can be sampled by DTrace can be visualized
as a �ame graph

Function execution time

Data cache misses

Instruction cache misses

Branch mispredictions

Memory allocation sizes

...

Developed by Brendan Gregg

.

Flame graphs

Hints

Identi�cation of hot code-paths

The x-axis is the sample population

The y-axis is the stack depth

The width of a box is proportional to the measured quantity.
E.g.,

A wide box means that a function either takes a lot of time to
complete or that it is called too often (in either case the
probability that its stack trace is sampled increases)

The colors are not signi�cant (they are picked at random to be
"warm")

.

Flame graphs - Validation

Problem How do we know that �ame graphs are valid ?

We picked a function that caused only few cache misses, and made
it on purpose invalidate all the cpu caches.

We then regenerated the �ame graph and the function's box in the
was vastly increased.

.

Flame graphs - Deltas

De�nition A "delta" is a new graph derived by the subtraction of
two �ame graphs

Examine how a property's value increases or decreases between
two versions of the same application. E.g.,

Which functions became faster and which ones slower
Which functions cause more instruction cache misses and
which ones less
...

A delta graph consists of two graphs, the �ame graph and the
cold graph

.

Flame graphs - Deltas - Cold graph

Example of a cold graph

.

The end

Thank you. Questions?

