
An MP-capable network stack for DragonFlyBSD

with minimal use of locks

Aggelos Economopoulos

1 Introduction

When DragonFlyBSD forked from
FreeBSD 4, it inherited a decades-
old network stack. While it is well
tested and a reference implementation,
the code was a bad fit for modern
multicore hardware. This situation
was only going to get worse as the
number of cores on typical processor
chips is expected to increase over time.
The main problem was the assumption
that, except for hardware interrupts,
“since there is only one CPU, only one
thread can access the network stack
data structures”. As for other kernel
subsystems, the usual way to ensure
this assumption remained true on an
SMP system has been to force mutual
exclusion between processes attempt-
ing to run in kernel mode by requiring
them to obtain a lock (the Big Giant
Lock or BGL) first.

Of course, this “solution” doesn’t
allow the kernel to use more than one
CPU at a time. At this point, the tra-
ditional approach is to try and par-
tition the problem. This approach,
(commonly know as fine grained lock-
ing) protects selected (sets of) signif-
icant data structures using appropri-
ate locking primitives. This way, the
kernel can run on all system CPUs,
as long as no two threads try to ac-
cess the same data structure. How-
ever, some data structures are more
frequently accessed and this results in
contention for the corresponding locks.
Heavy lock contention can significantly

affect the system’s ability to linearly
scale to large numbers of CPUs, which
is the ultimate, if unattainable, goal.
Again, the traditional solution is to
split the lock into more locks, each
protecting a part of the original data
structure. Following this path, the
FreeBSD and Linux kernels have now
got to thousands of locks in a run-
ning kernel. While fine-grained lock-
ing demonstrably scales well to tens of
CPUs, one should keep in mind that
most of this locking is pure overhead
on uniprocessors and small-scale SMP
systems where concurrency is inher-
ently limited.

Another issue that becomes appar-
ent with large lock numbers is that it
is no longer easy to ensure the correct-
ness of the locking operations. Even
experienced kernel programmers may
find it hard to adhere to the multi-
tude of rules that define the appro-
priate locking order to avoid deadlock
scenarios. It is certainly not a trivial
task to deduce what went wrong when
such a problem occurs. While straight-
forward at first, fine-grained locking
quickly becomes cumbersome as the
programmers try to make the system
scale on more CPUs.

1



2 Organization of the

DragonFly network

stack

One of the goals set when DragonFly
was first created was to try and min-
imize the complexity associated with
locking. To this end, the project de-
velopers moved most of the protocol
code into separate threads that com-
municate with the rest of the kernel
using messages. At this point, a short
description of the DragonFly messag-
ing model is in order.

2.1 Message passing se-

mantics

The basic abstraction we need to know
about is the message port. DragonFly
defines a few types of ports, but the
network code only uses thread-owned
ports. Access to such a port is only
allowed by code running on the same
CPU as the thread that the port be-
longs to. Such code can just enter
a critical section and manipulate the
port directly (e.g. linking a message in
the port’s message queue). A thread
running on a different CPU that wants
to queue a message must send an IPI
to the CPU of the owning thread in
order to access the port. Needless to
say, IPIs are not fast, so it is essential
to batch IPI delivery. Sending an IPI
while the target CPU is processing its
IPI queue will not generate an actual
hardware interrupt in DragonFly and
the network code takes special care to
minimize the number of IPIs necessary.
As can be seen in the table, the ba-
sic DragonFly kernel API for message
passing is quite simple.

lwkt sendmsg
Send asynchronous message

lwkt domsg
Send synchronous message

lwkt forwardmsg
Forward message to some

other port

lwkt getport
Retrieve next queued message

without blocking

lwkt waitport
Block waiting for a
particular message

2.2 Protocol threads

In DragonFly, the code responsible for
TCP and UDP packet processing runs
in separate kernel threads. There is
one TCP and one UDP thread for each
system CPU. Packets belonging to the
same TCP connection are always han-
dled on the CPU of the TCP thread
handling the connection. Any TCP
timers associated with a TCP connec-
tion are guaranteed to run on this same
CPU. This ensures effortless mutual
exclusion and cache locality. Each pro-
tocol thread has an associated message
port. Protocols other than TCP and
UDP are handled by generic per-CPU
network threads.

2.3 Data flow

When a network interface (this dis-
cussion focuses on ethernet interfaces
without loss of generality) receives a
packet, the driver interrupt routine
stores the data in a newly allocated
mbuf. The interrupt code (which runs
in the context of a dedicated inter-
rupt thread) decides which protocol
thread to send the mbuf to based on
the packet type and content. E.g.
for TCP, this requires looking at the
source and destination address and
port numbers. The code takes special
care to link together mbufs destined for

2



the same CPU and use IPIs to do the
actual message delivery on the target
CPUs so that the number of IPIs is sig-
nificantly reduced.

Mbufs embed the actual message
structure and the code listening on the
destination message port can easily get
to the enclosing mbuf. After this, the
protocol thread can process the incom-
ing mbuf as usual. In the common case
of a valid data packet, the data is deliv-
ered to the receive sockbuf of the cor-
responding socket and any userspace
threads waiting for input are notified.

A userspace thread that wants to
send some data either passes them
over to the protocol thread which then
queues the data in the send sockbuf
or (the new behaviour) directly queues
the data in the sockbuf and asyn-
chronously notifies the protocol thread
that more outgoing data is available.
The data will be transmitted when the
protocol thread gets around to servic-
ing the message (or earlier, if there al-
ready was pending data in the sock-
buf; if the protocol thread starts send-
ing data because of some earlier mes-
sage, it will send all the available data).
Transmission takes place by placing
the data in the interface output queue
and arranging for the driver if start()
routine to run. This procedure runs in
the context of a separate ifnet thread.
There are as many ifnet threads as
there are system CPUs and, for a given
interface, if start runs on the same
CPUs as the interrupt thread for this
interface’s interrupt handler.

The reader should keep in mind
that this description does not men-
tion a number of complications be-
cause of IP fragment reassembly, IP
multicast handling, ALTQ, the packet
filtering code and several other factors
that a general purpose implementation
must concern itself with. We also omit
some optimizations that would confuse
rather than aid in the understanding of
the network stack organization.

3 Issues

The work to make the network code
MP-safe begun with identifying the
data structures that are accessed both
by userland threads running in ker-
nel mode and the pure-kernel protocol
threads. The most interesting of those
is the socket buffer or sockbuf.

3.1 The socket buffer

Each socket has a send sockbuf that
is written to by userspace threads and
that the corresponding protocol thread
reads from, as well as a receive sockbuf
that is only written to by a single pro-
tocol thread but can be read by any
userspace thread that has a reference
to the socket. In other words, we have
both a multiple producers / single con-
sumer and a single producer / multiple
consumers problem to solve. Solutions
to such problems exist, but are either
too complex or incur high overhead or
require special instructions that may
not be available on all architectures of
interest. Notice, however, that the side
of the protocol thread is always the
“single” side. Therefore, the two cases
can be turned to a, comparatively sim-
pler, single producer / single consumer
(abbreviated SPSC) problem by using
a lock to synchronise accesses by the
userspace threads. There are obvious
lockless and wait-free algorithms for
the SPSC case. The main advantage
of this “shortcut” is that, in contrast
to using a socket buffer lock, a protocol
thread need never wait for userspace to
be done with the sockbuf. On top of
that, further work might make it pos-
sible to eliminate the need for the user-
side lock when there is only one refer-
ence to the socket, thus achieving com-
pletely lock-free operation. The next
three section will discuss the imple-
mentations we considered, including
the one (cupholders) which we ended
up adopting.

3



Figure 1: Receive path

4



3.1.1 The ring buffer

There are several ways to tackle the
SPSC scenario; a popular one and the
one initially pursued was to use a ring
buffer. The naive implementation uses
a read index that is incremented by the
consumer every time it reads an entry
from the buffer and a write index that
the consumer updates after writing a
new entry. This is adequate from a cor-
rectness perspective, but requires the
producer to access the read index (to
know whether the buffer is full) and
(more importantly, for reasons that
will be explained later) the consumer
to read the write index in order to de-
tect buffer underflow. In other words,
there is continuous cacheline thrash-
ing. A better and equally simple ap-
proach is the one suggested in FastFor-
ward [1], where the reader and writer
can detect underflow/overflow just by
reading the buffer entries. As long as
there is more than a cacheline’s worth
of entries in the buffer, there will not
be any cacheline bouncing between the
producer and consumer CPUs (assum-
ing they are different, otherwise there
is no issue). Our original implementa-
tion was FastForward-style. Unfortu-
nately, the network code uses the sock-
buf character count (i.e. the amount of
bytes in the buffer) to decide whether
there is data to receive or if there is
enough free space to store incoming
data. It is possible to change this be-
haviour and look at the sockbuf entries
directly, but there were other prob-
lems that made use of the ring buffer
unattractive.

Another issue was the space wasted
on unused buffer entries. Since the
buffer was fix-sized, it had to be large
enough so it wouldn’t overflow even
when the TCP window reached its
maximum size. That meant a 4KB
buffer, or 8KB of kernel memory re-
served for every socket (for the send
and receive sockbufs), even if no data

was going through it. Naturally, an
inefficient peer could always fill the
buffer by sending small packets be-
cause it is no longer trivial to do mbuf
coalescing. In that case, we would be
forced to silently drop some in-window
data. Punishing an inefficient peer
may or may not be acceptible in all
usage scenarios.

3.1.2 M CORAL

The next approach we tried was to
keep a singly-linked list and make sure
that the consumer never removes the
tail. This way, the producer doesn’t
need to worry about the mbuf go-
ing away while it is linking in a new
mbuf. This required adding a new
mbuf flag (M_CORAL) to mark an mbuf
whose data has been consumed but it
is kept around because it is the last
one in the sockbuf. The consumer can
use this flag to eventually remove the
mbuf as soon as there is a new list
tail. While valid and efficient as a
strategy, the implementation was more
complex than the ring buffer code.
More importantly, mbufs are allocated
from different memory pools depend-
ing on whether there’s an associated
mbuf cluster. If the mbuf has been al-
located together with an mbuf cluster,
they must be deallocated together. If
we need to keep the cluster around as
well, we are again wasting memory (al-
though not as much memory, and not
for sockets that have never been used),
which is what we set out to avoid.

3.1.3 Cupholders

At this point it was suggested to add
another level of indirection, which led
to the birth of the cupholder struc-
ture. A cupholder merely contains a
pointer to the next (if any) cupholder
and a pointer to an mbuf. We only
link the cupholders in the sockbuf and
make sure there is always at least

5



one cupholder present. With care-
ful use of memory barriers, we can
make sure the producer and consumer
can safely run without any synchro-
nization. Cupholders may solve the
excessive memory usage issue, but
they come with their own disadvan-
tages. They increase the cache foot-
print of the sockbuf-related data and
they must be dynamically allocated.
Having to go through the objcache al-
locator makes a measurable difference
in microbenchmarks (although the ef-
fect is barely noticeable for practical
tests). In the future, we will prob-
ably revisit the M CORAL approach
in order to resolve the memory deal-
location issues. One could try to
make the ring buffer resizable as well,
only this would quickly invalidate the
ring buffer’s primary advantage which
is very low code and algorithm com-
plexity. Exploration of different ap-
proaches is easy as the APIs are more
or less compatible between the differ-
ent implementations.

Regardless of the approach, a lock-
less sockbuf comes with the interest-
ing complication that we can no longer
provide a “stable” character count (re-
call that the character count is the
number of bytes in the sockbuf). It
turns out that this is not a big prob-
lem. We can synthesize an approxi-
mate character count and the value we
return is a lower bound on the amount
of data available if we are inquired by
the consumer and an upper bound if
inquired by the producer. So if the
character count informs the consumer
that there is available data, that data
cannot go away (since there can only
be one consumer at a time). Similarly,
if the producer is told there is space
in the sockbuf, that space will remain
available since no one else can add data
to the sockbuf. Our sb reader API en-
sures that a routine accessing the sock-
buf will get a stable character count
while it is running.

The other issue is avoiding the lost
wakeup problem. Some process con-
text code can try to read data from
the sockbuf, find out that there isn’t
any and go to sleep expecting a wakeup
from the protocol code when new data
arrive. But if the wakeup comes after
the check for available data and before
the process goes to sleep, it will be lost
and the process might remain blocked
forever. This issue is resolved by sim-
ply messaging the protocol thread re-
questing a reply as soon as an appro-
priate predicate (that there is more
data than a specified value or the the
connection state has changed) becomes
true. Subsequently, the process blocks
waiting for the reply message. If more
data arrived after our check, the proto-
col thread will reply immediately and
we can continue.

3.2 The protocol control

block

The network stack keeps protocol-
specific data in a separate structure
that is linked to from the socket (there
is an 1:1 correspondence). This struc-
ture is called the protocol control block
or PCB. There are different types of
PCBs. All internet family protocols
maintain an “inpcb” that keeps track
of the local (and maybe the foreign, for
connected sockets) address and port
numbers associated with the socket
and a variety of IP options and flags.
For TCP sockets, the inpcb also points
to a TCP control block (also known
as “tcpcb”) which contains the TCP-
specific protocol data (window infor-
mation etc.).

The inpcbs (and therefore the
tcpcbs) are kept in a per-cpu hash ta-
ble. We use the same hash function as
for assigning a TCP packet to a thread.
This way, the TCP threads will only
do a lookup on the CPU-local part of
the hash table. As would be expected,
accesses to the tcpcb originate mostly

6



from the TCP threads; the only ex-
ception was querying and setting TCP
options which happened from process
context. The obvious fix was to mes-
sage the appropriate TCP thread in-
stead.

While UDP doesn’t need its own
PCB (it just makes use of the inpcb),
its PCB issues are far more interesting
than TCP’s. The original code runs
under the MP lock so it can simply
use a global hash table. Unfortunately,
breaking up the hash table in per-CPU
tables is not as straightforward as we
could wish for.

The problem is what to use as in-
put to the hash function (which would
also be used for assigning packets to
the UDP threads). The inpcb for a
UDP socket may or may not have a
foreign address and port set, depend-
ing on whether the user has called con-
nect() on the socket or not. On top
of that, a connect() can change these
fields at any time. The local address
can change from under us as well. If
we were to use these fields to calculate
the CPU number, we would have to
move the inpcb between CPUs when
any one of the them changed (assum-
ing we weren’t lucky enough that the
new CPU was the same as the old one).
This shouldn’t be too hard to handle
by marking the old inpcb as “in dele-
tion” and only deleting it after we have
installed a copy of it on the new CPU.
For now, we just hash on the local port,
but an important issue is that, e.g. for
a DNS server, neither the remote ad-
dress and port nor the local address
are normally set. In that case, all DNS
packets will all go through only one
CPU. This cripples the scalability of
our DNS server.

Another approach would be to
replicate inpcbs with wildcard entries
on all CPUs. Since UDP does not
guarantee in-order data delivery, we
could have one sockbuf per CPU as
well. In that case the process side

would pull data in, say, a round-robin
fashion. It is uncertain how well exist-
ing applications would handle a data
stream that is routinely out-of-order
though.

3.3 The socket

The last major structure that is ac-
cessed by both process context and
protocol thread code is the actual
socket. This structure serves a num-
ber of different purposes, therefore its
fields must be treated separately. To
begin with, there are fields such as the
socket type and the pointer to the pro-
tocol switch (a structure consisting of
function pointers) that are set early
in the lifetime of a socket and remain
fixed thereafter. Then, there are fields
such as the socket options that are only
modified from process context but, as
long as updates happen atomically, it
is acceptable to race. If, for example,
two user threads try to update a socket
option, without any synchronization of
their own, they cannot predict the fi-
nal value of the option anyway, so we
might as well just allow the race. Of
course, while they do not modify the
socket options, the protocol threads
use their values, so we needed to go
through the protocol code to make sure
it does not depend on the option values
remaining constant while it is running.

Listening sockets also need to
keep track of sockets representing in-
progress or not yet accepted connec-
tions. For this purpose, these sockets
are linked into doubly-linked lists and
a socket might be removed from the
lists at any time, regardless of its posi-
tion in the list. For once, we went with
the spinlock approach. A queue lock in
the listening socket controls manipula-
tion of the linked lists and the sockets
contained therein. We can reevaluate
our approach if this turns out to be a
bottleneck in the future.

Some fields, such as the upcall and

7



Figure 2: Send path

system call emulator fields are only ac-
cessed by kernel subsystems that still
run under the BGL so they didn’t re-
quire any special attention. For others,
like SIGIO information, we just added
a new message type so the operation
can be performed in protocol thread
context.

Finally, we needed to deal with the
socket state transitions. The state field
encodes not only the connection status
but also whether the socket can send or
receive more data and, for connections
that haven’t been accepted yet, which
listening socket queue they’re in. Most
of these flags are not especially prob-
lematic (it is all right if they change
asynchronously) with the exception of
flags like SS CANTRCVMORE. The
process side code checks for this flag
before blocking waiting for data, but
the protocol thread can set it after the
check and just before the process goes

to sleep. Since we now block by send-
ing a message, even if we race the pro-
tocol thread will notice that we are
waiting for data on a socket that can’t
receive any and will wake us up by re-
plying to our message. It goes without
saying that in all of the cases above
the socket state flags are updated us-
ing atomic operations.

3.4 Additional work

Along with making the accesses to
shared data structures multiprocessor-
safe we needed to change some of the
message semantics. For instance, a
process sending data would send a syn-
chronous message containing an mbuf
pointer to the protocol thread, which
would then queue the mbuf in the
“send” sockbuf and perform the ac-
tual sending. This is obviously sub-
optimal. The new code will queue the

8



data in the sockbuf directly from pro-
cess context and issue an asynchronous
“notify” message to the appropriate
thread port. The sockbuf API allows
the consumer (in this case a proto-
col thread) to recognise “new” data as
opposed to data that has been trans-
mitted and awaits acknowledgement.
For now, this strategy is only used for
“plain” TCP data (i.e. not for UDP or
TCP out-of-band data).

The other interesting optimization
is that we added the option not to im-
mediately run a higher-priority thread
(such as a protocol thread) when send-
ing it a message. The default be-
haviour is to forcibly switch to that
thread, but that is inappropriate when
there is a lot of data to send. The
new behaviour is to set a special mes-
sage flag so that the protocol thread
will be scheduled but the sender can
keep running and continue adding new
data. Eventually, the protocol thread
will run and process all queued data en
masse.

4 Performance mea-

surements

This is just the beginning of the opti-
mization work. What is needed is mea-
surements of our current performance
in a number of different workloads that
can serve as a reference for comparison.
Getting these measurements is a work
in progress. The main issue is that the
mainline kernel can already saturate
a couple of gigabit links, so it is not
straightforward to demonstrate scala-
bility to large numbers of CPUs. Triv-
ial tests have been encouraging how-
ever. Hopefully, DragonFly will have a

10Gbit driver before too long and we
will be able to fix any remaining per-
formance issues and publish results of
real-world testing.

5 Conclusions

Removing the requirement for the
BGL from the socket layer and the
TCP and UDP threads was a task
that was long overdue. That task is
not yet complet; we need to fix a few
(known) remaining issues and do a lot
of real-world testing to uncover the
bugs that are bound to exist. Just as
importantly, we need to produce per-
formance data that will justify our ap-
proach and indicate that one need not
use ever more fine grained locking too
achieve MP scalability.

6 Acknowledgements

The author would like to thank
Sepherosa Ziehau, Matthew Dillon, Si-
mon Schubert and Kornilios Kour-
tis for many discussions on the prob-
lems encountered. Special thanks to
Matthew Dillon for contributing both
code and ideas when real life in-
terfered with the planned schedule.
This project doubles as the author’s
diploma thesis in the National Techni-
cal University of Athens ECE depart-
ment.

References

[1] John Giacomoni, Tipp Moseley,
and Manish Vachharajani: Fast-
Forward for Efficient Pipeline
Parallelism

9


