DragonFly On-Line Manual Pages

Search: Section:  


zptcon.f(3)                         LAPACK                         zptcon.f(3)

NAME

zptcon.f -

SYNOPSIS

Functions/Subroutines subroutine zptcon (N, D, E, ANORM, RCOND, RWORK, INFO) ZPTCON Function/Subroutine Documentation subroutine zptcon (integerN, double precision, dimension( * )D, complex*16, dimension( * )E, double precisionANORM, double precisionRCOND, double precision, dimension( * )RWORK, integerINFO) ZPTCON Purpose: ZPTCON computes the reciprocal of the condition number (in the 1-norm) of a complex Hermitian positive definite tridiagonal matrix using the factorization A = L*D*L**H or A = U**H*D*U computed by ZPTTRF. Norm(inv(A)) is computed by a direct method, and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). Parameters: N N is INTEGER The order of the matrix A. N >= 0. D D is DOUBLE PRECISION array, dimension (N) The n diagonal elements of the diagonal matrix D from the factorization of A, as computed by ZPTTRF. E E is COMPLEX*16 array, dimension (N-1) The (n-1) off-diagonal elements of the unit bidiagonal factor U or L from the factorization of A, as computed by ZPTTRF. ANORM ANORM is DOUBLE PRECISION The 1-norm of the original matrix A. RCOND RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the 1-norm of inv(A) computed in this routine. RWORK RWORK is DOUBLE PRECISION array, dimension (N) INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: The method used is described in Nicholas J. Higham, "Efficient Algorithms for Computing the Condition Number of a Tridiagonal Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986. Definition at line 120 of file zptcon.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Sat Nov 16 2013 zptcon.f(3)

Search: Section: