DragonFly On-Line Manual Pages

Search: Section:  


zlahqr.f(3)                         LAPACK                         zlahqr.f(3)

NAME

zlahqr.f -

SYNOPSIS

Functions/Subroutines subroutine zlahqr (WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, IHIZ, Z, LDZ, INFO) ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. Function/Subroutine Documentation subroutine zlahqr (logicalWANTT, logicalWANTZ, integerN, integerILO, integerIHI, complex*16, dimension( ldh, * )H, integerLDH, complex*16, dimension( * )W, integerILOZ, integerIHIZ, complex*16, dimension( ldz, * )Z, integerLDZ, integerINFO) ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm. Purpose: ZLAHQR is an auxiliary routine called by CHSEQR to update the eigenvalues and Schur decomposition already computed by CHSEQR, by dealing with the Hessenberg submatrix in rows and columns ILO to IHI. Parameters: WANTT WANTT is LOGICAL = .TRUE. : the full Schur form T is required; = .FALSE.: only eigenvalues are required. WANTZ WANTZ is LOGICAL = .TRUE. : the matrix of Schur vectors Z is required; = .FALSE.: Schur vectors are not required. N N is INTEGER The order of the matrix H. N >= 0. ILO ILO is INTEGER IHI IHI is INTEGER It is assumed that H is already upper triangular in rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless ILO = 1). ZLAHQR works primarily with the Hessenberg submatrix in rows and columns ILO to IHI, but applies transformations to all of H if WANTT is .TRUE.. 1 <= ILO <= max(1,IHI); IHI <= N. H H is COMPLEX*16 array, dimension (LDH,N) On entry, the upper Hessenberg matrix H. On exit, if INFO is zero and if WANTT is .TRUE., then H is upper triangular in rows and columns ILO:IHI. If INFO is zero and if WANTT is .FALSE., then the contents of H are unspecified on exit. The output state of H in case INF is positive is below under the description of INFO. LDH LDH is INTEGER The leading dimension of the array H. LDH >= max(1,N). W W is COMPLEX*16 array, dimension (N) The computed eigenvalues ILO to IHI are stored in the corresponding elements of W. If WANTT is .TRUE., the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with W(i) = H(i,i). ILOZ ILOZ is INTEGER IHIZ IHIZ is INTEGER Specify the rows of Z to which transformations must be applied if WANTZ is .TRUE.. 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. Z Z is COMPLEX*16 array, dimension (LDZ,N) If WANTZ is .TRUE., on entry Z must contain the current matrix Z of transformations accumulated by CHSEQR, and on exit Z has been updated; transformations are applied only to the submatrix Z(ILOZ:IHIZ,ILO:IHI). If WANTZ is .FALSE., Z is not referenced. LDZ LDZ is INTEGER The leading dimension of the array Z. LDZ >= max(1,N). INFO INFO is INTEGER = 0: successful exit .GT. 0: if INFO = i, ZLAHQR failed to compute all the eigenvalues ILO to IHI in a total of 30 iterations per eigenvalue; elements i+1:ihi of W contain those eigenvalues which have been successfully computed. If INFO .GT. 0 and WANTT is .FALSE., then on exit, the remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg matrix rows and columns ILO thorugh INFO of the final, output value of H. If INFO .GT. 0 and WANTT is .TRUE., then on exit (*) (initial value of H)*U = U*(final value of H) where U is an orthognal matrix. The final value of H is upper Hessenberg and triangular in rows and columns INFO+1 through IHI. If INFO .GT. 0 and WANTZ is .TRUE., then on exit (final value of Z) = (initial value of Z)*U where U is the orthogonal matrix in (*) (regardless of the value of WANTT.) Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Contributors: 02-96 Based on modifications by David Day, Sandia National Laboratory, USA 12-04 Further modifications by Ralph Byers, University of Kansas, USA This is a modified version of ZLAHQR from LAPACK version 3.0. It is (1) more robust against overflow and underflow and (2) adopts the more conservative Ahues & Tisseur stopping criterion (LAWN 122, 1997). Definition at line 195 of file zlahqr.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Sat Nov 16 2013 zlahqr.f(3)

Search: Section: