DragonFly On-Line Manual Pages
WLAN(4) DragonFly Kernel Interfaces Manual WLAN(4)
NAME
wlan - generic 802.11 link-layer support
SYNOPSIS
device wlan
DESCRIPTION
The wlan module provides generic code to support 802.11 drivers. Where a
device does not directly support 802.11 functionality this layer fills
in. The wlan module is required by all native 802.11 drivers.
wlan supports multi-mode devices capable of operating in both 2.4GHz and
5GHz bands and supports numerous 802.11 standards: 802.11a, 802.11b,
802.11g, 802.11n, and 802.11s (Draft 3.0). The WPA, 802.11i, and 802.1x
security protocols are supported through a combination of in-kernel code
and user-mode applications. The WME/WMM multi-media protocols are
supported entirely within the wlan module but require a suitably capable
hardware device. Likewise the 802.11h specification is supported only by
suitably capable devices.
Drivers provide 802.11 functionality through wlan interfaces that are
created at runtime using interface cloning. This is done with the
ifconfig(8) create command or using the wlans_IFX variable in rc.conf(5).
Some drivers support the creation of multiple wlan interfaces that share
the same underlying device; this is the way by which ``multi-bss
support'' is provided but it can also be used to create WDS links and
other interesting applications.
There are several types of wlan interfaces that may be created:
sta A client station in an infrastructure bss (i.e. one that
associates to an access point).
hostap An access point in an infrastructure bss.
mesh A mesh station in an MBSS network.
adhoc A station in an IBSS network.
ahdemo A station operating in ``adhoc demo mode''. This is essentially
an IBSS station that does not use management frames (e.g. no
beacons are transmitted). An ahdemo interface is especially
useful for applications that want to transmit and receive raw
802.11 packets.
monitor An interface used exclusively for capturing 802.11 frames. In
particular this specified to have read-only properties which
enables it to be operated on frequencies where one would
otherwise not be allowed.
wds A station that passes 4-address 802.11 traffic for the purpose
of tunneling traffic over a wireless link. Typically this
station would share the same MAC address as a hostap interface.
It may be possible to create wds interfaces without a companion
hostap interface but that is not guaranteed; one may need to
create a hostap interface that does not send beacon frames
before wds interfaces may be created.
Note that an interface's type cannot be changed once it is created.
wlan defines several mechanisms by which plugin modules may be used to
extend its functionality. Cryptographic support such as WEP, TKIP, and
AES-CCMP are implemented as standalone modules (if not statically
configured into a system) that register with wlan. Similarly there is an
authenticator framework for defining 802.11 authentication services and a
framework for integrating access control mechanisms specific to the
802.11 protocol.
DEBUGGING
If the IEEE80211_DEBUG option is included in the kernel configuration,
debugging controls are available using:
sysctl net.wlan.X.debug=mask
where X is the number of the wlan instance and mask is a bit-or of
control bits that determine which debugging messages to enable. For
example,
sysctl net.wlan.0.debug=0x00200000
enables debugging messages related to scanning for an access point, adhoc
neighbor, or an unoccupied channel when operation as an access point.
The wlandebug(8) tool provides a more user-friendly mechanism for doing
the same thing. Note that
sysctl net.wlan.debug=mask
defines the initial value of the debugging flags for each cloned wlan
interface; this is useful to enable debug messages during interface
creation.
COMPATIBILITY
The module name of wlan was used to be compatible with NetBSD.
Mesh stations follow the 802.11s Draft 3.0 specification which is not
ratified and subject to change. Beware that this specification is
incompatible with earlier drafts; and stations implementing earlier
drafts (e.g. Linux) may not interoperate.
SEE ALSO
ath(4), bwn(4), iwi(4), iwm(4), iwn(4), netintro(4), ral(4), rum(4),
run(4), urtwn(4), wi(4), wlan_acl(4), wlan_ccmp(4), wlan_tkip(4),
wlan_wep(4), wlan_xauth(4), wpi(4)
STANDARDS
More information can be found in the IEEE 802.11 Standards.
HISTORY
The wlan driver first appeared in FreeBSD 5.0.
AUTHORS
Atsushi Onoe is the author of the original NetBSD software from which
this work began. Sam Leffler brought the code into FreeBSD and then
rewrote it to support multi-mode devices, 802.11g, 802.11n, WPA/802.11i,
WME, multi-bss, and add the extensible frameworks for cryptographic,
authentication, and access control plugins. This manual page was written
by Tom Rhodes <trhodes@FreeBSD.org>.
DragonFly 6.1-DEVELOPMENT July 3, 2021 DragonFly 6.1-DEVELOPMENT