DragonFly On-Line Manual Pages
LinearAlgebra(3) DragonFly Library Functions Manual LinearAlgebra(3)
NAME
vpIdentity3, vpIdentity4, vpNormalize3, vpMatrixVectorMult4,
vpMatrixMult4, vpCrossProduct, vpSolveSystem4, vpSetVector3,
vpSetVector4 - linear algebra routines
SYNOPSIS
#include <volpack.h>
void
vpIdentity3(m_dst)
vpMatrix3 m_dst;
void
vpIdentity4(m_dst)
vpMatrix4 m_dst;
vpResult
vpNormalize3(v_src1)
vpVector3 v_src1;
void
vpMatrixVectorMult4(v_dst, m_src1, v_src1)
vpVector4 v_dst;
vpMatrix4 m_src1;
vpVector4 v_src1;
void
vpMatrixMult4(m_dst, m_src1, m_src2)
vpVector4 m_dst, m_src1, m_src2;
void
vpCrossProduct(v_dst, v_src1, v_src2)
vpVector3 v_dst, v_src1, v_src2;
vpResult
vpSolveSystem4(m_src1, b, count)
vpMatrix4 m_src1;
vpVector4 b[];
int count;
void
vpSetVector3(v_dst, x, y, z)
vpVector3 v_dst;
double x, y, z;
void
vpSetVector4(v_dst, x, y, z, w)
vpVector4 v_dst;
double x, y, z, w;
ARGUMENTS
m_src1, m_src2, m_dst
Source and destination matrices.
v_src1, v_src2, v_dst
Source and destination vectors.
b Array of right-hand-side vectors.
count Number of right-hand-side vectors.
x, y, z, w
Vector components.
DESCRIPTION
These routines form a simple linear algebra package used internally by
VolPack. The routines are also available as utility routines for use
by the application.
vpIdentity3 assigns the identity matrix to a 3-by-3 matrix.
vpIdentity4 assigns the identity matrix to a 4-by-4 matrix.
vpNormalize3 normalizes a 3-element vector (so the magnitude is 1.0).
The result overwrites the source vector.
vpMatrixVectorMult4 multiplies a 4-by-4 matrix by a 4-element column
vector and stores the result in the destination vector (v_dst = m .
v_src).
vpMatrixMult4 multiplies two 4-by-4 matrices and stores the result in
the destination matrix (m_dst = m_src1 . m_src2).
vpCrossProduct computes the cross product of two 3-element vectors and
stores the result in the destination vector (v_dst = v_src1 x v_src2).
vpSolveSystem4 solves the linear system m . x = b for each right-hand-
side vector in the b array. The solution vectors overwrite the vectors
in the b array. The solution is computed using Gauss-Jordan
elimination with partial pivoting and implicit scaling.
vpSetVector3 initializes the components of a 3-element vector (v_dst =
[x, y, z]). It is a macro.
vpSetVector4 initializes the components of a 4-element vector (v_dst =
[x, y, z, w]). It is a macro.
ERRORS
vpNormalize3 and vpSolveSystem4 normally return VP_OK. The following
error return value is possible:
VPERROR_SINGULAR
The vector is a 0 vector (vpNormalize3 only), or the matrix is
singular (vpSolveSystem4 only).
SEE ALSO
VolPack(3)
VolPack LinearAlgebra(3)