DragonFly On-Line Manual Pages

Search: Section:  


ssytd2.f(3)                         LAPACK                         ssytd2.f(3)

NAME

ssytd2.f -

SYNOPSIS

Functions/Subroutines subroutine ssytd2 (UPLO, N, A, LDA, D, E, TAU, INFO) SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm). Function/Subroutine Documentation subroutine ssytd2 (characterUPLO, integerN, real, dimension( lda, * )A, integerLDA, real, dimension( * )D, real, dimension( * )E, real, dimension( * )TAU, integerINFO) SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm). Purpose: SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal form T by an orthogonal similarity transformation: Q**T * A * Q = T. Parameters: UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular N N is INTEGER The order of the matrix A. N >= 0. A A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading n-by-n upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n-by-n lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = 'U', the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the elements above the first superdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors; if UPLO = 'L', the diagonal and first subdiagonal of A are over- written by the corresponding elements of the tridiagonal matrix T, and the elements below the first subdiagonal, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors. See Further Details. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). D D is REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T: D(i) = A(i,i). E E is REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T: E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. TAU TAU is REAL array, dimension (N-1) The scalar factors of the elementary reflectors (see Further Details). INFO INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. Author: Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. Date: September 2012 Further Details: If UPLO = 'U', the matrix Q is represented as a product of elementary reflectors Q = H(n-1) . . . H(2) H(1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in A(1:i-1,i+1), and tau in TAU(i). If UPLO = 'L', the matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(n-1). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = 'U': if UPLO = 'L': ( d e v2 v3 v4 ) ( d ) ( d e v3 v4 ) ( e d ) ( d e v4 ) ( v1 e d ) ( d e ) ( v1 v2 e d ) ( d ) ( v1 v2 v3 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). Definition at line 174 of file ssytd2.f. Author Generated automatically by Doxygen for LAPACK from the source code. Version 3.4.2 Sat Nov 16 2013 ssytd2.f(3)

Search: Section: