DragonFly On-Line Manual Pages

Search: Section:  


PZUNMTR(l)                             )                            PZUNMTR(l)

NAME

PZUNMTR - overwrite the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

SUBROUTINE PZUNMTR( SIDE, UPLO, TRANS, M, N, A, IA, JA, DESCA, TAU, C, IC, JC, DESCC, WORK, LWORK, INFO ) CHARACTER SIDE, TRANS, UPLO INTEGER IA, IC, INFO, JA, JC, LWORK, M, N INTEGER DESCA( * ), DESCC( * ) COMPLEX*16 A( * ), C( * ), TAU( * ), WORK( * )

PURPOSE

PZUNMTR overwrites the general complex M-by-N distributed matrix sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * sub( C ) sub( C ) * Q TRANS = 'C': Q**H * sub( C ) sub( C ) * Q**H where Q is a complex unitary distributed matrix of order nq, with nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Q is defined as the product of nq-1 elementary reflectors, as returned by PZHETRD: if UPLO = 'U', Q = H(nq-1) . . . H(2) H(1); if UPLO = 'L', Q = H(1) H(2) . . . H(nq-1). Notes ===== Each global data object is described by an associated description vector. This vector stores the information required to establish the mapping between an object element and its corresponding process and memory location. Let A be a generic term for any 2D block cyclicly distributed array. Such a global array has an associated description vector DESCA. In the following comments, the character _ should be read as "of the global array". NOTATION STORED IN EXPLANATION --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case, DTYPE_A = 1. CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating the BLACS process grid A is distribu- ted over. The context itself is glo- bal, but the handle (the integer value) may vary. M_A (global) DESCA( M_ ) The number of rows in the global array A. N_A (global) DESCA( N_ ) The number of columns in the global array A. MB_A (global) DESCA( MB_ ) The blocking factor used to distribute the rows of the array. NB_A (global) DESCA( NB_ ) The blocking factor used to distribute the columns of the array. RSRC_A (global) DESCA( RSRC_ ) The process row over which the first row of the array A is distributed. CSRC_A (global) DESCA( CSRC_ ) The process column over which the first column of the array A is distributed. LLD_A (local) DESCA( LLD_ ) The leading dimension of the local array. LLD_A >= MAX(1,LOCr(M_A)). Let K be the number of rows or columns of a distributed matrix, and assume that its process grid has dimension p x q. LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the p processes of its process column. Similarly, LOCc( K ) denotes the number of elements of K that a process would receive if K were distributed over the q processes of its process row. The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC: LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ), LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ). An upper bound for these quantities may be computed by: LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

SIDE (global input) CHARACTER = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right. UPLO (global input) CHARACTER = 'U': Upper triangle of A(IA:*,JA:*) contains elementary reflectors from PZHETRD; = 'L': Lower triangle of A(IA:*,JA:*) contains elementary reflectors from PZHETRD. TRANS (global input) CHARACTER = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H. M (global input) INTEGER The number of rows to be operated on i.e the number of rows of the distributed submatrix sub( C ). M >= 0. N (global input) INTEGER The number of columns to be operated on i.e the number of columns of the distributed submatrix sub( C ). N >= 0. A (local input) COMPLEX*16 pointer into the local memory to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L', or (LLD_A,LOCc(JA+N-1)) if SIDE = 'R'. The vectors which define the elementary reflectors, as returned by PZHETRD. If SIDE = 'L', LLD_A >= max(1,LOCr(IA+M-1)); if SIDE = 'R', LLD_A >= max(1,LOCr(IA+N-1)). IA (global input) INTEGER The row index in the global array A indicating the first row of sub( A ). JA (global input) INTEGER The column index in the global array A indicating the first column of sub( A ). DESCA (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix A. TAU (local input) COMPLEX*16 array, dimension LTAU, where if SIDE = 'L' and UPLO = 'U', LTAU = LOCc(M_A), if SIDE = 'L' and UPLO = 'L', LTAU = LOCc(JA+M-2), if SIDE = 'R' and UPLO = 'U', LTAU = LOCc(N_A), if SIDE = 'R' and UPLO = 'L', LTAU = LOCc(JA+N-2). TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by PZHETRD. TAU is tied to the distributed matrix A. C (local input/local output) COMPLEX*16 pointer into the local memory to an array of dimension (LLD_C,LOCc(JC+N-1)). On entry, the local pieces of the distributed matrix sub(C). On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C ) or sub( C )*Q' or sub( C )*Q. IC (global input) INTEGER The row index in the global array C indicating the first row of sub( C ). JC (global input) INTEGER The column index in the global array C indicating the first column of sub( C ). DESCC (global and local input) INTEGER array of dimension DLEN_. The array descriptor for the distributed matrix C. WORK (local workspace/local output) COMPLEX*16 array, dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK. LWORK (local or global input) INTEGER The dimension of the array WORK. LWORK is local input and must be at least If UPLO = 'U', IAA = IA, JAA = JA+1, ICC = IC, JCC = JC; else UPLO = 'L', IAA = IA+1, JAA = JA; if SIDE = 'L', ICC = IC+1; JCC = JC; else ICC = IC; JCC = JC+1; end if end if If SIDE = 'L', MI = M-1; NI = N; LWORK >= MAX( (NB_A*(NB_A-1))/2, (NqC0 + MpC0)*NB_A ) + NB_A * NB_A else if SIDE = 'R', MI = M; MI = N-1; LWORK >= MAX( (NB_A*(NB_A-1))/2, ( NqC0 + MAX( NpA0 + NUMROC( NUMROC( NI+ICOFFC, NB_A, 0, 0, NPCOL ), NB_A, 0, 0, LCMQ ), MpC0 ) )*NB_A ) + NB_A * NB_A end if where LCMQ = LCM / NPCOL with LCM = ICLM( NPROW, NPCOL ), IROFFA = MOD( IAA-1, MB_A ), ICOFFA = MOD( JAA-1, NB_A ), IAROW = INDXG2P( IAA, MB_A, MYROW, RSRC_A, NPROW ), NpA0 = NUMROC( NI+IROFFA, MB_A, MYROW, IAROW, NPROW ), IROFFC = MOD( ICC-1, MB_C ), ICOFFC = MOD( JCC-1, NB_C ), ICROW = INDXG2P( ICC, MB_C, MYROW, RSRC_C, NPROW ), ICCOL = INDXG2P( JCC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0 = NUMROC( MI+IROFFC, MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( NI+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ), ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined by calling the subroutine BLACS_GRIDINFO. If LWORK = -1, then LWORK is global input and a workspace query is assumed; the routine only calculates the minimum and optimal size for all work arrays. Each of these values is returned in the first entry of the corresponding work array, and no error message is issued by PXERBLA. INFO (global output) INTEGER = 0: successful exit < 0: If the i-th argument is an array and the j-entry had an illegal value, then INFO = -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i. Alignment requirements ====================== The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment properties, namely the following expressions should be true: If SIDE = 'L', ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC .AND. IAROW.EQ.ICROW ) If SIDE = 'R', ( MB_A.EQ.NB_C .AND. IROFFA.EQ.ICOFFC ) ScaLAPACK version 1.7 13 August 2001 PZUNMTR(l)

Search: Section: