DragonFly On-Line Manual Pages

Search: Section:  


LLC(1)				     LLVM				LLC(1)

NAME

llc - LLVM static compiler

SYNOPSIS

llc [options] [filename]

DESCRIPTION

The llc command compiles LLVM source inputs into assembly language for a specified architecture. The assembly language output can then be passed through a native assembler and linker to generate a native exe- cutable. The choice of architecture for the output assembly code is automati- cally determined from the input file, unless the -march option is used to override the default.

OPTIONS

If filename is "-" or omitted, llc reads from standard input. Other- wise, it will from filename. Inputs can be in either the LLVM assembly language format (.ll) or the LLVM bitcode format (.bc). If the -o option is omitted, then llc will send its output to standard output if the input is from standard input. If the -o option specifies "-", then the output will also be sent to standard output. If no -o option is specified and an input file other than "-" is speci- fied, then llc creates the output filename by taking the input file- name, removing any existing .bc extension, and adding a .s suffix. Other llc options are described below. End-user Options -help Print a summary of command line options. -O=uint Generate code at different optimization levels. These corre- spond to the -O0, -O1, -O2, and -O3 optimization levels used by clang. -mtriple=<target triple> Override the target triple specified in the input file with the specified string. -march=<arch> Specify the architecture for which to generate assembly, over- riding the target encoded in the input file. See the output of llc -help for a list of valid architectures. By default this is inferred from the target triple or autodetected to the current architecture. -mcpu=<cpuname> Specify a specific chip in the current architecture to generate code for. By default this is inferred from the target triple and autodetected to the current architecture. For a list of available CPUs, use: llvm-as < /dev/null | llc -march=xyz -mcpu=help -filetype=<output file type> Specify what kind of output llc should generated. Options are: asm for textual assembly ( '.s'), obj for native object files ('.o') and null for not emitting anything (for performance test- ing). Note that not all targets support all options. -mattr=a1,+a2,-a3,... Override or control specific attributes of the target, such as whether SIMD operations are enabled or not. The default set of attributes is set by the current CPU. For a list of available attributes, use: llvm-as < /dev/null | llc -march=xyz -mattr=help --disable-fp-elim Disable frame pointer elimination optimization. --disable-excess-fp-precision Disable optimizations that may produce excess precision for floating point. Note that this option can dramatically slow down code on some systems (e.g. X86). --enable-no-infs-fp-math Enable optimizations that assume no Inf values. --enable-no-nans-fp-math Enable optimizations that assume no NAN values. --enable-unsafe-fp-math Enable optimizations that make unsafe assumptions about IEEE math (e.g. that addition is associative) or may not work for all input ranges. These optimizations allow the code generator to make use of some instructions which would otherwise not be usable (such as fsin on X86). --stats Print statistics recorded by code-generation passes. --time-passes Record the amount of time needed for each pass and print a report to standard error. --load=<dso_path> Dynamically load dso_path (a path to a dynamically shared object) that implements an LLVM target. This will permit the target name to be used with the -march option so that code can be generated for that target. Tuning/Configuration Options --print-machineinstrs Print generated machine code between compilation phases (useful for debugging). --regalloc=<allocator> Specify the register allocator to use. Valid register alloca- tors are: basic Basic register allocator. fast Fast register allocator. It is the default for unoptimized code. greedy Greedy register allocator. It is the default for optimized code. pbqp Register allocator based on 'Partitioned Boolean Quadratic Programming'. --spiller=<spiller> Specify the spiller to use for register allocators that support it. Currently this option is used only by the linear scan reg- ister allocator. The default spiller is local. Valid spillers are: simple Simple spiller local Local spiller Intel IA-32-specific Options --x86-asm-syntax=[att|intel] Specify whether to emit assembly code in AT&T syntax (the default) or Intel syntax.

EXIT STATUS

If llc succeeds, it will exit with 0. Otherwise, if an error occurs, it will exit with a non-zero value.

SEE ALSO

lli

AUTHOR

Maintained by The LLVM Team (http://llvm.org/).

COPYRIGHT

2003-2017, LLVM Project 3.7 2017-02-22 LLC(1)

Search: Section: