DragonFly On-Line Manual Pages
dtrsyl.f(3) LAPACK dtrsyl.f(3)
NAME
dtrsyl.f -
SYNOPSIS
Functions/Subroutines
subroutine dtrsyl (TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
SCALE, INFO)
DTRSYL
Function/Subroutine Documentation
subroutine dtrsyl (characterTRANA, characterTRANB, integerISGN, integerM,
integerN, double precision, dimension( lda, * )A, integerLDA, double
precision, dimension( ldb, * )B, integerLDB, double precision,
dimension( ldc, * )C, integerLDC, double precisionSCALE, integerINFO)
DTRSYL
Purpose:
DTRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
op(A)*X - X*op(B) = scale*C,
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
A and B must be in Schur canonical form (as returned by DHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
Parameters:
TRANA
TRANA is CHARACTER*1
Specifies the option op(A):
= 'N': op(A) = A (No transpose)
= 'T': op(A) = A**T (Transpose)
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
TRANB
TRANB is CHARACTER*1
Specifies the option op(B):
= 'N': op(B) = B (No transpose)
= 'T': op(B) = B**T (Transpose)
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
ISGN
ISGN is INTEGER
Specifies the sign in the equation:
= +1: solve op(A)*X + X*op(B) = scale*C
= -1: solve op(A)*X - X*op(B) = scale*C
M
M is INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
N
N is INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
LDA
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,M).
B
B is DOUBLE PRECISION array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
LDB
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C
C is DOUBLE PRECISION array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
LDC
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M)
SCALE
SCALE is DOUBLE PRECISION
The scale factor, scale, set <= 1 to avoid overflow in X.
INFO
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
Author:
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date:
November 2011
Definition at line 164 of file dtrsyl.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Version 3.4.2 Sat Nov 16 2013 dtrsyl.f(3)